Jump to content

Casey Honniball: Finding Her Space in Lunar Science


Recommended Posts

  • Publishers
Posted

Lunar scientist Casey Honniball conducts lunar observations and field work near volcanoes to investigate how astronauts could use instruments during moonwalks.

Name: Casey Honniball
Title: Lunar scientist
Organization: Planetary Geology, Geophysics, and Geochemistry Laboratory, Science Directorate (Code 698)

Casey Honniball stands in front of a colorful lunar map
Casey Honniball is a lunar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Courtesy of Casey Honniball

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

I study the Moon using Earth-based telescopes to understand the lunar volatile cycle. I also conduct field work at volcanic sites to investigate how astronauts can utilize instruments during moonwalks.

Why did you want to be a lunar scientist?

When I was 6 years old and in first grade, I was diagnosed with dyslexia. I was tutored and had help with homework and tests, which continued until I was a junior in high school. At that point, I learned to manage my dyslexia.

Because I was not good at reading and writing, I turned to more physical things such as things I could touch and build. I discovered physics in high school, which turned me on to other sciences.

I went to college for physics, but learned that I preferred astronomy. In graduate school I realized I wanted to be a lunar scientist.

I have a B.S. in astronomy from the University of Arizona, a master’s in geology and geophysics from the University of Hawaiʻi at Manoa, and a Ph.D. in Earth and planetary science also from the University of Hawaiʻi at Manoa.

While doing my master’s, one of my advisers introduced me to Earth-based lunar observation to look at hydration on the surface of the Moon. I found that I really liked the Moon and found my place in science.

What brought you to Goddard?

During graduate school, I worked with Goddard’s Dr. Kelsey Young on a field deployment testing instruments for astronauts. In 2020, I became a post-doctoral fellow for her at Goddard.

In January 2023, I became a visiting assistant research scientist in the Planetary Geology, Geophysics, and Geochemistry Laboratory through CRESSTII, and Kelsey is still my mentor.

As your mentor, what is the most important advice Kelsey Young has given you?

Kelsey helps me stay passionate about the work I am doing. She does this by providing new and exciting opportunities and being supportive about work-life balance.

I admire Kelsey’s spirit of adventure and her passion for field work. I appreciate all she has done for me and am grateful for the opportunities she and our lab have provided.

Casey Honniball smiles in front of three computer screens as she works
Using Earth-based telescopes, Casey studies the Moon to understand the lunar volatile cycle. “While doing my master’s, one of my advisers introduced me to Earth-based lunar observation to look at hydration on the surface of the Moon,” said Casey. “I found that I really liked the Moon and found my place in science.”
Courtesy of Casey Honniball

What sorts of instruments do you test for use on the Moon?

I test the use of mid- to long-wave infrared instruments for reconnaissance of a location prior to astronauts setting foot outside a vehicle. For example, an instrument on a rover can scan the area to characterize the minerology and volatiles including water, carbon dioxide, sulfur, methane, and similar chemicals. This then allows astronauts and scientists to select locations to collect samples.

I test this procedure on Earth by doing field work.

What is the most exciting field work you have done to test those instruments?

In 2015, I went to the Atacama Desert in Chile to install a radio camera on an existing telescope. I spent about a month installing the camera and observing on the telescope. There were only about 15 people I interacted with during that time. The area is very Martian-like; it is very red, dry, and barren, although we saw wild donkeys.

During Christmas of 2015 and again in 2016, one month each time, I went to Antarctica to launch a high-altitude balloon radio telescope. I lived at McMurdo Station and worked at their balloon facility near the airstrip. Antarctica is a completely different experience than you could imagine. You are so cut off from civilization. You have only the people who are there, although, I was there during Antarctica’s summer when McMurdo had many people. You are in a completely barren landscape that is so magnificently beautiful.

In 2018, I deployed an instrument I built to the Kīlauea Lava Lake on the Big Island of Hawaii. This is a National Park with thousands of visitors yearly. The lava lake was active at the time. We could see lava spewing out at different vent locations in the lake. It was very exciting and kind of scary. We had special permits allowing us into restricted areas closer to the lake. We were told not to get any closer to the cliff edge of the lake than our height so that if we tripped, we would not fall into the active lava.

I’d love to do field work in Iceland. Iceland is a great location for planetary field analog research as it has a similar landscape and geologic context to the Moon and Mars.

Casey Honniball wears a blue hard hat and orange vest while standing in front of a field work site.
Casey conducts field work at volcanic sites to investigate how astronauts can utilize instruments during moonwalks.
Courtesy of Casey Honniball

What outreach do you do that inspires others with dyslexia?

I like to talk to elementary through high school students about life as a scientist and how I got to where I am. I like to tell my story about learning to manage dyslexia to hopefully inspire others.

What do you do for fun?

I am a deep-sea scuba certified diver. I mainly dove in Hawaii because I was living there. I also enjoy working out, hiking, baking sourdough bread, and being with my family.

Where do you see yourself in five years?

I hope to be supporting Artemis science operations on the surface of Moon and continuing to studying the Moon’s surface remotely and conducting research through field deployments.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Fear is a state of mind.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Mar 19, 2024
Editor
Madison Olson
Contact
Elizabeth M. Jarrell
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In this infrared photograph, the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, beams its eight-laser beacon to the Deep Space Optical Communications flight laser transceiver aboard NASA’s Psyche spacecraft.NASA/JPL-Caltech The project has exceeded all of its technical goals after two years, setting up the foundations of high-speed communications for NASA’s future human missions to Mars.
      NASA’s Deep Space Optical Communications technology successfully showed that data encoded in lasers could be reliably transmitted, received, and decoded after traveling millions of miles from Earth at distances comparable to Mars. Nearly two years after launching aboard the agency’s Psyche mission in 2023, the technology demonstration recently completed its 65th and final pass, sending a laser signal to Psyche and receiving the return signal, from 218 million miles away. 
      “NASA is setting America on the path to Mars, and advancing laser communications technologies brings us one step closer to streaming high-definition video and delivering valuable data from the Martian surface faster than ever before,” said acting NASA Administrator Sean Duffy. “Technology unlocks discovery, and we are committed to testing and proving the capabilities needed to enable the Golden Age of exploration.”
      This video details how the Deep Space Optical Communications experiment broke records and how the technology demonstration could pave the way for future high-bandwidth data transmission out to Mars distances and beyond. NASA/JPL-Caltech Record-breaking technology
      Just a month after launch, the Deep Space Optical Communications demonstration proved it could send a signal back to Earth it established a link with the optical terminal aboard the Psyche spacecraft.
      “NASA Technology tests hardware in the harsh environment of space to understand its limits and prove its capabilities,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Over two years, this technology surpassed our expectations, demonstrating data rates comparable to those of household broadband internet and sending engineering and test data to Earth from record-breaking distances.”
      On Dec. 11, 2023, the demonstration achieved a historic first by streaming an ultra-high-definition video to Earth from over 19 million miles away (about 80 times the distance between Earth and the Moon), at the system’s maximum bitrate of 267 megabits per second. The project also surpassed optical communications distance records on Dec. 3, 2024, when it downlinked Psyche data from 307 million miles away (farther than the average distance between Earth and Mars). In total, the experiment’s ground terminals received 13.6 terabits of data from Psyche.
      How it works
      Managed by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, the experiment consists of a flight laser transceiver mounted on the Psyche spacecraft, along with two ground stations to receive and send data from Earth. A powerful 3-kilowatt uplink laser at JPL’s Table Mountain Facility transmitted a laser beacon to Psyche, helping the transceiver determine where to aim the optical communications laser back to Earth.
      Both Psyche and Earth are moving through space at tremendous speeds, and they are so distant from each other that the laser signal — which travels at the speed of light — can take several minutes to reach its destination. By using the precise pointing required from the ground and flight laser transmitters to close the communication link, teams at NASA proved that optical communications can be done to support future missions throughout the solar system.
      Another element of the experiment included detecting and decoding a faint signal after the laser traveled millions of miles. The project enlisted a 200-inch telescope at Caltech’s Palomar Observatory in San Diego County as its primary downlink station, which provided enough light-collecting area to collect the faintest photons. Those photons were then directed to a high-efficiency detector array at the observatory, where the information encoded in the photons could be processed.   
      “We faced many challenges, from weather events that shuttered our ground stations to wildfires in Southern California that impacted our team members,” said Abi Biswas, Deep Space Optical Communications project technologist and supervisor at JPL. “But we persevered, and I am proud that our team embraced the weekly routine of optically transmitting and receiving data from Psyche. We constantly improved performance and added capabilities to get used to this novel kind of deep space communication, stretching the technology to its limits.”
      Brilliant new era
      In another test, data was downlinked to an experimental radio frequency-optical “hybrid” antenna at the Deep Space Network’s Goldstone complex near Barstow, California. The antenna was retrofitted with an array of seven mirrors, totaling 3 feet in diameter, enabling the antenna to receive radio frequency and optical signals from Psyche simultaneously.
      The project also used Caltech’s Palomar Observatory and a smaller 1-meter telescope at Table Mountain to receive the same signal from Psyche. Known as “arraying,” this is commonly done with radio antennas to better receive weak signals and build redundancy into the system.
      “As space exploration continues to evolve, so do our data transfer needs,” said Kevin Coggins, deputy associate administrator, NASA’s SCaN (Space Communications and Navigation) program at the agency’s headquarters. “Future space missions will require astronauts to send high-resolution images and instrument data from the Moon and Mars back to Earth. Bolstering our capabilities of traditional radio frequency communications with the power and benefits of optical communications will allow NASA to meet these new requirements.”
      This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN program within the Space Operations Mission Directorate. The Psyche mission is led by Arizona State University. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator. NASA JPL, managed by Caltech in Pasadena, California, is responsible for the mission’s overall management.
      To learn more about the laser communications demo, visit:
      https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc/
      NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase NASA’s Tech Demo Streams First Video From Deep Space via Laser Teachable Moment: The NASA Cat Video Explained News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2025-120
      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      2 min read NASA Gateways to Blue Skies 2026 Competition
      Article 28 minutes ago 6 min read NASA’s Tally of Planets Outside Our Solar System Reaches 6,000
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 Min Read Building a Lunar Network: Johnson Tests Wireless Technologies for the Moon 
      From left, Johnson Exploration Wireless Laboratory (JEWL) Software Lead William Dell; Lunar 3GPP Principal Investigator Raymond Wagner; JEWL intern Harlan Phillips; and JEWL Lab Manager Chatwin Lansdowne. Credits: Nevada Space Proving Grounds (NSPG) NASA engineers are strapping on backpacks loaded with radios, cameras, and antennas to test technology that might someday keep explorers connected on the lunar surface. Their mission: test how astronauts on the Moon will stay connected during Artemis spacewalks using 3GPP (LTE/4G and 5G) and Wi-Fi technologies. 
      It’s exciting to bring lunar spacewalks into the 21st century with the immersive, high-definition experience that will make people feel like they’re right there with the astronauts.
      Raymond Wagner
      NASA’s Lunar 3GPP Project Principal Investigator
      A NASA engineer tests a backpack-mounted wireless communications system in the Nevada desert, simulating how astronauts will stay connected during Artemis lunar spacewalks. NSPG With Artemis, NASA will establish a long-term presence at the Moon, opening more of the lunar surface to exploration than ever before. This growth of lunar activity will require astronauts to communicate seamlessly with each other and with science teams back on Earth.  
      “We’re working out what the software that uses these networks needs to look like,” said Raymond Wagner, principal investigator in NASA’s Lunar 3GPP project and member of Johnson Space Center’s Exploration Wireless Laboratory (JEWL) in Houston. “We’re prototyping it with commercial off-the-shelf hardware and open-source software to show what pieces are needed and how they interact.” 
      Carrying a prototype wireless network pack, a NASA engineer helps test wireless 4G and 5G technologies that could one day keep Artemis astronauts connected on the Moon. NSPG The next big step comes with Artemis III, which will land a crew on the Moon and carry a 4G/LTE demonstration to stream video and audio from the astronauts on the lunar surface. 
       The vision goes further. “Right now the lander or rover will host the network,” Wagner said. “But if we go to the Moon to stay, we may eventually want actual cell towers. The spacesuit itself is already becoming the astronaut’s cell phone, and rovers could act as mobile hotspots. Altogether, these will be the building blocks of communication on the Moon.” 
      Team members from NASA’s Avionics Systems Laboratory at Johnson Space Center in Houston.NASA/Sumer Loggins Back at Johnson, teams are simulating lunar spacewalks, streaming video, audio, and telemetry over a private 5G network to a mock mission control. The work helps engineers refine how future systems will perform in challenging environments. Craters, lunar regolith, and other terrain features all affect how radio signals travel — lessons that will also carry over to Mars. 
      For Wagner, the project is about shaping how humanity experiences the next era of exploration. “We’re aiming for true HD on the Moon,” he said. “It’s going to be pretty mind-blowing.” 
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Johnson Space Center Artemis Explore More
      3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 2 months ago 4 min read Mark Cavanaugh: Integrating Safety into the Orion Spacecraft 
      Article 2 months ago 3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools
      Article 6 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
  • Check out these Videos

×
×
  • Create New...