Jump to content

Eclipse Photographers Will Help Study Sun During Its Disappearing Act


Recommended Posts

  • Publishers
Posted

5 min read

Eclipse Photographers Will Help Study Sun During Its Disappearing Act

As the Sun temporarily disappears from midday skies over North America on April 8, 2024, hundreds of volunteers will capture photos of the total solar eclipse to help us better understand the Sun and its relationship with Earth.

These photographers will be participating in three NASA-funded citizen science projects to study the Sun’s ghostly outer atmosphere – the corona – during totality, when the Moon completely covers the bright disk of the Sun and the corona is revealed.

Against a black background is a total solar eclipse. In the middle is a black circle – the Moon. Surrounding it are white streams of wispy light, streaming out into the sky.
The Sun’s outer atmosphere, or corona, appears like a feathery white halo around the dark disk of the Moon during a total solar eclipse, as seen in this photo taken from Madras, Oregon, on Aug. 21, 2017.
NASA/Aubrey Gemignani

The corona is the birthplace of the solar wind – a constant stream of particles and material flowing from the Sun that impacts Earth and other planets. The best time to see the full range of dynamics in the corona is during a total solar eclipse.

However, in any one location along April’s eclipse path, totality will last less than four and a half minutes – not long enough to watch the corona change. By staging observers all along the eclipse path, though, these NASA projects hope to essentially extend totality for over 90 minutes – the time it takes for the Moon’s shadow to cross from Mexico to Canada. Afterward, the projects will combine their images into “movies” revealing activity in the corona that would otherwise be hard to see.

Eclipse Megamovie

Eclipse Megamovie is a NASA-funded citizen science project that engages photographers across the United States to capture images of the Sun’s outermost atmosphere – the corona – during the total solar eclipse on April 8, 2024. Volunteers will use DSLR cameras on mounts that will track the Sun’s position in the sky to record changes in the Sun’s corona during the eclipse.
NASA/Lacey Young

Led by Laura Peticolas of Sonoma State University in California, the Eclipse Megamovie project is asking photographers to capture the corona using their own DSLR cameras on mounts that will track the Sun’s position in the sky during the eclipse.

The project has already selected and sent tracking mounts to over 70 individuals who will be stationed along the eclipse path in the U.S. and Mexico. Over 80 additional photographers who have their own DSLR cameras and tracking mounts and who plan to be in the Moon’s shadow on April 8 have also joined the project. Others are welcome to participate if they sign up by March 18.

“Citizen scientists are the perfect volunteers for this type of research,” Peticolas said. “They’re coming with their own cameras. They’re coming with the expertise on how to use those cameras. They’re coming with enthusiasm. And with this group of amazing volunteers, we’re going to get a dataset that is literally impossible to get in any other way.”

The project is also seeking volunteers with experience in databases, Python coding, and machine learning to help process the images and reveal hard-to-spot changes in the corona.

DEB Initiative

The Dynamic Eclipse Broadcast (DEB) Initiative, led by Bob Baer and Matt Penn of Southern Illinois University in Carbondale, organizes volunteers as they capture images of the corona during the 2024 eclipse. Using identical instruments at more than 70 different locations across North America, participants document the moment-by-moment appearance of the corona throughout the eclipse.
NASA/Beth Anthony

The Dynamic Eclipse Broadcast (DEB) Initiative, led by Bob Baer and Matt Penn of Southern Illinois University in Carbondale, has recruited 82 volunteer teams to image the eclipse from Mexico, the U.S., and Canada.

All teams, which range in size from a few people to as many as 30, have been selected and have received identical astrophotography equipment provided by the project. Many of them will be in the path of totality to capture views of the corona, but some will be outside the path, imaging the Sun itself.

“We’re looking at the evolution of the solar corona along the entire path,” Baer said. “And we’re also looking outside of the path of totality at the solar disk to connect the changes we see in the solar corona back to the surface of the Sun.”

During the eclipse, DEB teams will upload images of the partial phases every minute to the project’s image server, while some teams will also stream live video. During totality, teams in the path will collect images more rapidly, each contributing a single detailed image of the corona.

CATE 2024

Led by Amir Caspi of the Southwest Research Institute in Colorado, the Citizen Continental-America Telescopic Eclipse (CATE) 2024 project will place 35 teams in the eclipse path from Texas to Maine to capture the corona in polarized light.
NASA/Joy Ng

Led by Amir Caspi of the Southwest Research Institute in Colorado, the Citizen Continental-America Telescopic Eclipse (CATE) 2024 project will place 35 teams in the eclipse path from Texas to Maine to capture the corona in polarized light.

Light travels in waves, but those waves can be oriented in different directions, or polarization angles. Caspi explains that light we see from the corona is sunlight that gets bounced around by the corona before it reaches our eyes. “That bouncing process makes the light polarized and it makes it go in a particular direction,” he said. “By measuring that you can understand what’s going on in the corona.”

All of the CATE 2024 teams have been selected and have received identical telescopes, mounts, and cameras. Teams are currently practicing and receiving feedback in preparation for the eclipse.

To learn more about these projects or to sign up to participate, visit the websites below.
NASA Funds 3 Citizen Science Projects to Study 2024 U.S. Solar Eclipse
Eclipse Megamovie
DEB Initiative
CATE 2024

by Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.
      The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.
      NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland David J. McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.
      The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.
      David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.
      The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.
      NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
      To learn more about IMAP, please visit:
      https://www.nasa.gov/imap
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Division Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science Mission Directorate Solar Terrestrial Probes Program View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      These maps of Prince George’s County, MD, show surface temperatures collected a few hours apart on July 30, 2023 from the Landsat 9 satellite and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument. The dark blue spots in the right hand image are likely clouds that formed in the afternoon.Credit: Stephanie Schollaert Uz, NASA Goddard Space Flight Center Thousands of Americans are impacted each summer by excessive heat and humidity, some suffering from heat-related illnesses when the body can’t cool itself down. Data from NASA satellites could help local governments reduce the sweltering risks, thanks to a collaboration between NASA scientists and officials in Prince George’s County, Maryland. The effort demonstrates how local officials in other communities could turn to NASA data to inform decisions that provide residents with relief from summer heat.
      NASA researchers and their Prince George’s County collaborators reported in Frontiers in Environmental Science that they used the Landsat 8 satellite, jointly operated by NASA and the US Geological Survey, and NASA’s Aqua satellite, to gain insight into surface temperature trends across the county over the past few decades. The data also show how temperatures have responded to changing land use and construction. It is information that county planners and environmental experts hope can aid them in their attempts to remediate and prevent heat dangers in the future. The collaboration may also help the county’s first responders anticipate and prepare for heat-related emergencies and injuries.
      Cooperation with Prince George’s County expands on NASA’s historic role, said Stephanie Schollaert Uz, an applications scientist with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and one of the study authors. “Applying government satellite data to county-level problems is new here. We’re trying to make it easier for people outside of NASA to use our data, in part by including how-to guides referenced at the end of our paper,” Schollaert Uz said.
      In the long run, county officials hope to use NASA satellites to track the negative health impacts that arise from land use and modification. Removal of tree cover and the construction of non-permeable roads, parking lots, and structures that lead to water runoff are among the factors that create heat islands, where temperatures in localized areas soar relative to the surrounding landscape. In addition to the direct dangers of heat for county residents and workers, areas with higher-than-normal temperatures can drive intense local weather events.
      “There’s potentially a greater incidence of microbursts,” said Mary Abe of Prince George’s County’s sustainability division. “The atmosphere can become supercharged over hot spots,” causing high winds and flood-inducing rains.
      Prince George’s County planners anticipate relying on NASA satellites to determine where residents and county employees are at greater risk, predict how future construction could impact heat dangers, and develop strategies to moderate heat in areas currently experiencing elevated summer temperatures. Efforts might include protecting existing trees and planting new ones. It could include replacing impermeable surfaces (cement, pavement, etc.) with alternatives that let water soak into the ground rather than running off into storm drains. To verify and calibrate the satellite observations crucial for such planning, county experts are considering enlisting residents to act as citizen scientists to collect temperature and weather data on the ground, Abe said.
      Eventually, the NASA satellite temperature data could also lead to strategies to curb insect-borne diseases, said Evelyn Hoban, associate director for the Prince George’s County division of environmental health and communicable disease. “Once we know where the higher temperatures are, we can check to see if they create mosquito or tick breeding grounds,” said Hoban, who coauthored the study. “We could then focus our outreach and education, and perhaps prevention efforts, on areas of greater heat and risk.”
      A NASA guide is available to aid other communities who hope to duplicate the Prince George’s County study. The guide provides introductions on a variety of NASA satellite and ground-based weather station data. Instructions for downloading and analyzing the data are illustrated in an accompanying tutorial that uses the Prince George’s County study as an example for other communities to follow on their own.
      One of the greatest benefits of the collaboration, Abe said, is the boost in credibility that comes from incorporating NASA resources and expertise in the county’s efforts to improve safety and health. “It’s partly the NASA brand. People recognize it and they’re really intrigued by it,” she said. “Working with NASA builds confidence that the decision-making process is based firmly in science.”
      By James Riordon
      NASA Goddard Space Flight Center
      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Aug 28, 2025 EditorJames RiordonLocationNASA Goddard Space Flight Center Related Terms
      Earth General Landsat 8 / LDCM (Landsat Data Continuity Mission) Moderate Resolution Imaging Spectroradiometer (MODIS) Explore More
      3 min read NASA’s ECOSTRESS Detects ‘Heat Islands’ in Extreme Indian Heat Wave
      Article 3 years ago 6 min read Landsat Legacy: NASA-USGS Program Observing Earth from Space Turns 50
      Article 3 years ago 2 min read NASA’s ECOSTRESS Sees Las Vegas Streets Turn Up the Heat
      Article 3 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      According to the newly released 35th State of the Climate report, 2024 saw record highs in greenhouse gas concentrations, global land and ocean temperatures, sea levels, and ocean heat content. Glaciers also suffered their largest annual ice loss on record. Data records from ESA’s Climate Change Initiative helped underpin these findings.
      View the full article
    • By NASA
      NASA/Christopher LC Clark The parachute of the Enhancing Parachutes by Instrumenting the Canopy, or EPIC, test experiment deploys following an air launch from an Alta X drone on June 4, 2025, at NASA’s Armstrong Flight Research Center in Edwards, California. NASA researchers are developing technology to make supersonic parachutes safer and more reliable for delivering instruments and payloads to Mars.
      The flight tests were a first step toward filling gaps in computer models to improve supersonic parachutes. This work could also open the door to future partnerships, including with the aerospace and auto racing industries.
      Image Credit: NASA/Christopher LC Clark
      View the full article
    • By NASA
      Technicians conduct blanket closeout work on NASA’s IMAP (Interstellar Mapping and Acceleration Probe) observatory at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Friday, Aug. 15, 2025. The IMAP mission will explore and map the boundaries of the heliosphere — a huge bubble created by the Sun’s wind that encapsulates our entire solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond.Credit: NASA/Kim Shiflett Media accreditation is open for the launch of three observatories that will study the Sun and enhance the ability to make accurate space weather forecasts, helping protect technology systems that affect life on Earth.
      NASA is targeting no earlier than Tuesday, Sept. 23, for the launch of the agency’s IMAP (Interstellar Mapping and Acceleration Probe), the Carruthers Geocorona Observatory, and National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On–Lagrange 1 (SWFO-L1) observatory. The observatories will launch aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Accredited media will have the opportunity to participate in prelaunch briefings and interviews with key mission personnel prior to launch, as well as cover the launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      Media accreditation deadlines for the launch are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, Aug. 31. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Thursday, Sept. 4. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información en español en sobre el Centro Espacial Kennedy, comuníquese con Antonia Jaramillo: 321-501-8425. Si desea solicitar entrevistas en español sobre IMAP, póngase en contacto con María-José Viñas: maria-jose.vinasgarcia@nasa.gov. 
      NASA’s IMAP will use 10 science instruments to study and map the heliosphere, a vast magnetic bubble surrounding the Sun protecting our solar system from radiation incoming from interstellar space. This mission and its two rideshares will orbit the Sun near Lagrange point 1, about one million miles from Earth, where it will scan the heliosphere, analyze the composition of charged particles, and investigate how those particles move through the solar system. This will provide information on how the Sun accelerates charged particles, filling in essential puzzle pieces to understand the space weather environment across the solar system. The IMAP spacecraft also will continuously monitor solar wind and cosmic radiation. Scientists can use this information to evaluate new and improved capabilities for space weather prediction tools and models, which are vital for the health of human space explorers and the longevity of technological systems, like satellites and power grids, that can affect life on Earth.
      The agency’s Carruthers Geocorona Observatory is a small satellite set to study the exosphere, the outermost part of Earth’s atmosphere. Using ultraviolet cameras, it will monitor how space weather from the Sun impacts the exosphere, which plays a crucial role in protecting Earth from space weather events that can affect satellites, communications, and power lines. The exosphere, a cloud of neutral hydrogen extending to the Moon and possibly beyond, is created by the breakdown of water and methane by ultraviolet light from the Sun, and its glow, known as the geocorona, has been observed globally only four times before this mission.
      The SWFO-L1 mission, managed by NOAA and developed with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and commercial partners, will use a suite of instruments to provide real-time measurements of solar wind, along with a compact coronagraph to detect coronal mass ejections from the Sun. The observatory, serving as an early warning beacon for potentially destructive space weather events, will enable faster and more accurate forecasts. Its 24/7 data will support NOAA’s Space Weather Prediction Center in protecting vital infrastructure, economic interests, and national security, both on Earth and in space.
      David McComas, professor, Princeton University, leads the IMAP mission with an international team of 25 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and operates the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes program portfolio. The Explorers and Heliophysics Project Division at NASA Goddard manages the program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.
      NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
      For more details about the IMAP mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/imap/
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Aug 21, 2025 LocationNASA Headquarters Related Terms
      IMAP (Interstellar Mapping and Acceleration Probe) Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Heliophysics Division Kennedy Space Center Launch Services Program Science & Research Science Mission Directorate Space Weather
      View the full article
  • Check out these Videos

×
×
  • Create New...