Jump to content

NASA Awards Grants for Lunar Instrumentation


Recommended Posts

  • Publishers
Posted

5 min read

NASA Awards Grants for Lunar Instrumentation

NASA has awarded five scientists and engineers Development and Advancement of Lunar Instrumentation (DALI) grants to support the development of instruments for potential use in future lunar missions, including the agency’s Commercial Lunar Payload Services and Artemis campaign. 

The awardees were recognized during NASA’s Technology Development Plan plenary session at the 55th Lunar and Planetary Science Conference (LPSC) March 13, in The Woodlands, Texas. 

“Supporting innovation and research in science and technology is a central part of NASA’s overall mission,” said Joel Kearns, deputy associate administrator for exploration in NASA’s Science Mission Directorate in Washington. “These tools must demonstrate new technologies that significantly improve instrument measurement capabilities for addressing high-priority lunar science questions.” 

The goal of DALI is to develop and demonstrate instruments that show promise for use in future NASA flight opportunities. In addition, the instruments are intended to be ready for flight hardware build after the three-year project duration. Each of the selected scientists is granted approximately $1 million per year to develop their instrument. 

The grantees are based at institutions across the country:

DALI Grantees
DALI grantees: Stuart George, Jason Kriesel, David Stillman, Jeffrey Gillis-Davis, Hao Cao

DALI grantees: Stuart George, Jason Kriesel, David Stillman, Jeffrey Gillis-Davis, Hao Cao

Stuart George, NASA’s Johnson Space Center in Houston

In this project, Dr. George will develop the Compact Electron Proton Spectrometer (CEPS), a miniaturized space weather and radiation measurement instrument. CEPS will provide long-term, science-quality space environment monitoring specifically targeted at real time forecasting of solar energetic particle events on the lunar surface, as well as radiation monitoring data for crew health and protection. A particular focus of the CEPS instrument is saturation-free measurement of the largest and most extreme solar particle events and high quality discrimination of proton and electron signals.

Jason Kriesel, Opto- Knowledge Systems, Inc (OKSI) in Torrance, California

Jason Kriesel, of OKSI, is teaming with Honeybee Robotics and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, to produce a prototype instrument to measure lunar water and other volatiles on the Moon. The instrument will be designed to help answer important specific questions related to the origin, history, and future of water on the Moon, as well as help better understand planetary processes in general. The project will push forward a novel measurement approach using a hollow fiber optic gas cell, called a capillary absorption spectrometer (CAS). The CAS will be paired with a sample handling system optimized for analysis on the Moon. The resulting Lunar CAS (LuCAS) prototype will prove the technology on Earth, paving the way for its use on the Moon.   

David Stillman, Southwest Research Institute (SwRI) in Boulder, Colorado

The focus of Dr. Stillman’s project is the Synthetic Pulse Artemis Radar for Crustal Imaging (SPARCI; pronounced “sparky”), a novel ground penetrating radar (GPR). SPARCI uses two stationary transmitting antennas and a mobile receiver. This geometry was pioneered by the Apollo 17 Surface Electrical Properties (SEP) experiment. As a robotic or crewed rover traverses away from the transmitter, images of subsurface interfaces or discontinuities are built up. SPARCI uses a much wider bandwidth than the SEP, enabling both deeper and higher-resolution imaging, and its coded signals provide higher signal-to-noise. SPARCI will determine the thickness and density of the regolith (~10 meters), the structure of the upper megaregolith (100s m to kms), and the depth to the lower megaregolith (several km). SPARCI is therefore designed to advance our understanding of impact processes and crustal stratigraphy at the Artemis landing site(s), and eventually elsewhere on the Moon or other planets. 

Jeffrey Gillis-Davis, Washington University in St. Louis, Missouri

Dr. Gillis-Davis will lead the effort to develop an instrument to measure the chemistry of lunar materials using Laser-Induced Breakdown Spectroscopy (LIBS). Compositional information acquired by LIBS will help identify major lunar rock types as well as determine major element ice compositions, which relate to volatile sources. Knowledge about the chemical composition of these materials is of fundamental importance in lunar science. For instance, determining the proportions of different lunar rock types at exploration sites satisfies key goals of NASA and the lunar community. Further, measurements by this instrument are essential for figuring out how much water or other resources are present in a particular location on the Moon and could provide a necessary step toward better understanding water delivery to the Earth-Moon system. This LIBS system would incorporate cutting-edge technologies while reducing size, weight, and power relative to other LIBS systems. 

Hao Cao, University of California, Los Angeles

In this project, Dr. Cao and team will be developing a miniaturized, low-power, ultra-stable fluxgate magnetometer system for prolonged, uninterrupted operation on the lunar surface. The system incorporates a low-power, magnetically-clean thermal solution to achieve a temperature stability of 0.2 degrees Celsius at two distinct set-point temperatures, one for the lunar day and the other for the lunar night, to minimize fluxgate sensor offset drifts. This instrument will facilitate high-precision monitoring of the lunar magnetic fields across different timescales, enabling survey of the lunar surface magnetic environment and low-frequency electromagnetic sounding of the lunar deep interior. These measurements will provide invaluable insights into the bulk water content of the lunar mantle, characteristics of the partial melt layer above the lunar core, and the physical properties of the iron core of the Moon; thus, placing critical constraints on the formation and evolution of the Earth-Moon system.

The deadline for NASA’s DALI24 Step-1 submissions is April 12, 2024.  

DALI is part of NASA’s Lunar Discovery and Exploration Program (LDEP), which is managed by Science Mission Directorate’s Exploration Science Strategy and Integration Office (ESSIO). ESSIO ensures science is infused into all aspects of lunar exploration and leads lunar science integration within the Science Mission Directorate, with other NASA mission directorates, other government agencies, international partners, and commercial communities.

For more information about NASA’s Exploration Science Strategy Integration Office (ESSIO), visit:

https://science.nasa.gov/lunar-science/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Rendezvous and Capture
    • By Amazing Space
      NASA / SPACEX CRS-23 ISS RESUPPLY LAUNCH LIVE
    • By NASA
      Credit: NASA NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.  
      The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.
      This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jan Wittry
      Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      Share
      Details
      Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center View the full article
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...