Jump to content

Recommended Posts

  • Publishers
Posted

Overview

NASA’s Communications Services Project, known as CSP, is pioneering a new era of space communications by partnering with industry to provide commercial space relay communications services for NASA missions near Earth. CSP’s goal is to validate and deliver these commercial communication services to the Near Space Network by 2030. To meet this goal, CSP provided $278.5 million in funding to six domestic partners to develop and demonstrate space relay communication capabilities.

CSP aims to deliver innovative capabilities to meet NASA mission needs, while simultaneously supporting the growing commercial space communications market in the United States. CSP intends for future commercial space relay communication services to also support other government agencies and commercial space flight companies, further bolstering the domestic space industry.

Capability Development and Demos

CSP’s Capability Development and Demonstration (CDD) sub-project is responsible for ensuring commercial space relay capabilities will be available to support NASA missions and ready for validation in 2028. The CDD sub-project also conducts insight into industry activities, primarily through partnership agreements such as the Funded Space Act Agreements (FSAAs) CSP established with six industry partners.

To contact the CSP Capability Development and Demonstrations team, email the Capability Development and Demonstration Sub-Project Manager, Dave Chelmins, dchelmins@nasa.gov.

Mission Support

CSP’s Mission Support (MS) sub-project supports NASA missions as they prepare to make the transition to commercial space relay communication services. The MS sub-project leads CSP’s Commercial Services User Group and conducts simulations to help mission better understand the benefits and impacts of transitioning to commercial communication services. In addition, the MS sub-project facilitates demonstrations between early-adopter NASA missions and commercial service providers.

To contact the CSP Mission Support team, email Mission Support Sub-Project Manager, Ryan Richards, ryan.m.richards@nasa.gov.

Service Infusion

CSP is developing a set of service requirements that commercial providers must meet before they can provide operational services to NASA missions. The CSP Service Infusion (SI) sub-project is responsible for developing, and coordinating, these service requirements with key stakeholders including the mission community, the Near Space Network, and NASA’s mission directorate leadership. The CSP SI sub-project is also responsible for validating commercial services and transitioning these services to the NSN for operational use.

To contact the CSP Service Infusion team, contact Service Infusion Sub-Project Manager, Jennifer Rock, jennifer.l.rock@nasa.gov.

Near Earth Operations Testbed

CSP’s Near Earth Operations Testbed (NEO-T) sub-project develops advanced hardware-in-the-loop emulation capabilities that allow NASA missions interact with commercial space relay communication services from the comfort of the laboratory. NEO-T will allow direct connections between mission hardware and actual commercial provider systems, and supports missions from planning through system integration phases, and beyond.

To contact the CSP Near Earth Operations Testbed team, email the NEO-Testbed Sub-Project Manager, Nang Pham, nang.t.pham@nasa.gov.

FSAA Partners

NASA’s Communications Services Project has six Funded Space Act Agreements (FSAA) with industry partners to develop and demonstrate commercial space relay communication services.

Inmarsat Government Inc.

Inmarsat Government will demonstrate a variety of space-based applications enabled by their established ELERA worldwide L-band network and ELERA satellites.

Kuiper Government Solutions LLC

Kuiper will deploy over 3,000 satellites in low-Earth orbit that link to small customer terminals on one end and a global network of hundreds of ground gateways on the other.

SES Government Solutions

SES will develop a real-time, high-availability connectivity solution enabled by their established geostationary and medium-Earth orbit satellite constellations.

Space Exploration Technologies

SpaceX plans to connect their established Starlink constellation and extensive ground system to user spacecraft through optical intersatellite links for customers in low-Earth orbit.

Telesat U.S. Services LLC

Telesat plans to leverage their Telesat Lightspeed network with optical intersatellite link technology to provide seamless end-to-end connectivity for low-Earth orbit missions.

Viasat Incorporated

Viasat’s Real-Time Space Relay service, enabled by the anticipated ViaSat-3 network, is designed to offer a persistent on-demand capability for low-Earth orbit operators.

Contact Us

CSP is managed by NASA’s Glenn Research Center in Cleveland, Ohio, under the direction of NASA’s Space Communications and Navigation (SCaN) program. SCaN serves as the program office for all of NASA’s space communications activities, presently enabling the success of more than 100 NASA and non-NASA missions.

To contact NASA’s Communications Services Project, email the CSP Manager, Dr. Peter Schemmel, peter.j.schemmel@nasa.gov.

To contact the Space Communications and Navigation program, email scan@nasa.gov.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has awarded a contract to MacLean Engineering & Applied Technologies, LLC of Houston to provide simulation and advanced software services to the agency.
      The Simulation and Advanced Software Services II (SASS II) contract includes services from Oct. 1, 2025, through Sept. 30, 2030, with a maximum potential value not to exceed $150 million. The contract is a single award, indefinite-delivery/indefinite-quality contract with the capability to issue cost-plus-fixed-fee task orders and firm-fixed-price task orders.
      Under the five-year SASS II contract, the awardee is tasked to provide simulation and software services for space-based vehicle models and robotic manipulator systems; human biomechanical representations for analysis and development of countermeasures devices; guidance, navigation, and control of space-based vehicles for all flight phases; and space-based vehicle on-board computer systems simulations of flight software systems. Responsibilities also include astronomical object surface interaction simulation of space-based vehicles, graphics support for simulation visualization and engineering analysis, and ground-based and onboarding systems to support human-in-the-loop training.
      Major subcontractors include Tietronix Software Inc. in Houston and VEDO Systems, LLC, in League City, Texas.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      Chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Technology Johnson Space Center View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.
      Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.
      To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.
      “Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”

      During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.
      An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.
      “Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.
      As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.

      Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.
      The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.
      To learn how space communications and navigation capabilities support every agency mission, visit:
      https://www.nasa.gov/communicating-with-missions


      Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 1 week ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
      Article 2 weeks ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / DIP Start
      November 17, 2021 at 10:00 AM ESTEnd
      November 17, 2021 at 12:00 PM EST Workshop Series: What It’s About
      The Digital Information Platform (DIP) workshop series is intended to provide a deeper dive and a closer look at some of the core features being developed by the DIP sub-project under ATM-X.
      These workshops will give insight into DIP development, technology, and assumptions as well as providing a forum for engaging with the DIP team to pose questions and provide feedback on proposed designs. Engagement with the broader aviation community is a critical component to success of the DIP sub-project!
      There will be several workshops within this series spanning a variety of topics. Participants are encouraged to sign up for any workshop topics they feel they could contribute to or provide feedback on.
      Please keep an eye on the DIP homepage, under the upcoming events section, for future announcements of additional workshop topics!
      Workshop #1: DIP Architecture and Data Integration Services
      This workshop will cover DIP architecture and data integration services. Participants will get a look at how the DIP architecture is set-up as well as how data integration services are planned to be hosted on the platform.
      The DIP architecture review is intended to cover how DIP was envisioned and how DIP is being developed to address data needs across the industry. Participants will have a chance to provide feedback on the DIP architecture and gain insight into how one might interface with the DIP to send or receive data.
      The data integration services portion is intended to cover DIP’s technical approach to data integration. As an example implementation, there will be a first look at possible data fusion on the platform , including utilizing NASA’s Fuser, and tailoring for industry data consumers. Descriptions, at a high-level, of input to and output of the Fuser will also be discussed.
      Who Should Register?
      Participants interested in partnering with DIP and registering their service with the DIP platform are highly encouraged to attend this workshop. This is a unique opportunity for the aviation community to provide feedback and input on how this platform is structured to meet your needs.
      Data and service consumers as well as data and service providers are encouraged to attend this workshop to provide their feedback and input for DIP development.
      Participants looking to gain insight into upcoming DIP demonstrations or to learn more about DIP are encouraged to attend this workshop.
      Resources
      Presentation slides Session Recording Request materials via email (arc-dip-ext@mail.nasa.gov) Digital Information Platform
      Digital Information Platform Events
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More
      1 min read Digital Information Platform Library
      Article 10 minutes ago 1 min read DIP Events
      Article 11 minutes ago 1 min read DIP Request for Information (RFI) Information Session
      Article 11 minutes ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Eyes on the Solar System
      Explore NASA’s History
      Share
      Details
      Last Updated Jun 18, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Digital Information Platform Air Traffic Management – Exploration View the full article
    • By NASA
      Credit: NASA NASA has awarded a bridge contract to ASRC Federal System Solutions LLC of Beltsville, Maryland, to provide financial support and project planning and control services to the agency.
      The Program Analysis and Control Bridge Contract has a total potential value up to $98 million with a 13-month period of performance beginning Saturday, May 24. The contract includes both cost-plus-fixed-fee and indefinite-delivery/indefinite-quantity components.
      The scope of the work includes business functions such as accounting, scheduling, documentation and configuration management, as well as security compliance. The work will occur at NASA Headquarters in Washington, Goddard Space Flight Center in Greenbelt, Maryland, and Langley Research Center in Hampton, Virginia.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Maryland
      757-824-2958
      jeremy.l.eggers@nasa.gov
      Share
      Details
      Last Updated May 23, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Goddard Space Flight Center Langley Research Center View the full article
  • Check out these Videos

×
×
  • Create New...