Jump to content

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration


Recommended Posts

  • Publishers
Posted
10 Min Read

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration

A grey space vehicle consisting of several attached sections; purple solar panels protrude from several of the sections.
Figure 1. The Gateway space station—humanity’s first space station around the Moon—will be capable of being refueled in space.
Credits:
NASA

Do we have enough fuel to get to our destination? This is probably one of the first questions that comes to mind whenever your family gets ready to embark on a road trip. If the trip is long, you will need to visit gas stations along your route to refuel during your travel. NASA is grappling with similar issues as it gets ready to embark on a sustainable mission back to the Moon and plans future missions to Mars. But while your car’s fuel is gasoline, which can be safely and indefinitely stored as a liquid in the car’s gas tank, spacecraft fuels are volatile cryogenic liquid propellants that must be maintained at extremely low temperatures and guarded from environmental heat leaks into the spacecraft’s propellant tank. And while there is already an established network of commercial gas stations in place to make refueling your car a cinch, there are no cryogenic refueling stations or depots at the Moon or on the way to Mars. Furthermore, storing volatile propellant for a long time and transferring it from an in-space depot tank to a spacecraft’s fuel tank under microgravity conditions will not be easy since the underlying microgravity fluid physics affecting such operations is not well understood. Even with today’s technology, preserving cryogenic fuels in space beyond several days is not possible and tank-to-tank fuel transfer has never been previously performed or tested in space.

Heat conducted through support structures or from the radiative space environment can penetrate even the formidable Multi-Layer Insulation (MLI) systems of in-space propellant tanks, leading to boil-off or vaporization of the propellant and causing tank self-pressurization. The current practice is to guard against over-pressurizing the tank and endangering its structural integrity by venting the boil-off vapor into space. Onboard propellants are also used to cool down the hot transfer lines and the walls of an empty spacecraft tank before a fuel transfer and filling operation can take place.  Thus, precious fuel is continuously wasted during both storage and transfer operations, rendering long-duration expeditions—especially a human Mars mission—infeasible using current passive propellant tank pressure control methods.

Zero-Boil-Off (ZBO) or Reduced Boil-Off (RBO) technologies provide an innovative and effective means to replace the current passive tank pressure control design. This method relies on a complex combination of active, gravity-dependent mixing and energy removal processes that allow maintenance of safe tank pressure with zero or significantly reduced fuel loss.

Zero Boil-off Storage and Transfer: A Transformative Space Technology

At the heart of the ZBO pressure control system are two proposed active mixing and cooling mechanisms to counter tank self-pressurization.  The first is based on intermittent, forced, subcooled jet mixing of the propellantand involves complex, dynamic, gravity-dependent interaction between the jet and the ullage (vapor volume) to control the condensation and evaporation phase change at the liquid-vapor interface. The second mechanism uses subcooled droplet injection via a spraybar in the ullage to control tank pressure and temperature. While the latter option is promising and gaining prominence, it is more complex and has never been tested in microgravity where the phase change and transport behavior of droplet populations can be very different and nonintuitive compared to those on Earth.

Although the dynamic ZBO approach is technologically complex, it promises an impressive advantage over the currently used passive methods. An assessment of one nuclear propulsion concept for Mars transport estimated that the passive boil-off losses for a large liquid hydrogen tank carrying 38 tons of fuel for a three-year mission to Mars would be approximately 16 tons/year. The proposed ZBO system would provide a 42% saving of propellant mass per year. These numbers also imply that with a passive system, all the fuel carried for a three-year Mars mission would be lost to boil-off, rendering such a mission infeasible without resorting to the transformative ZBO technology.

The ZBO approach provides a promising method, but before such a complex technological and operational transformation can be fully developed, implemented, and demonstrated in space, important and decisive scientific questions that impact its engineering implementation and microgravity performance must be clarified and resolved.

The Zero-Boil-Off Tank (ZBOT) Microgravity Science Experiments

The Zero Boil-off Tank (ZBOT) Experiments are being undertaken to form a scientific foundation for the development of the transformative ZBO propellant preservation method. Following the recommendation of a ZBOT science review panel comprised of members from aerospace industries, academia, and NASA, it was decided to perform the proposed investigation as a series of three small-scale science experiments to be conducted onboard the International Space Station. The three experiments outlined below build upon each other to address key science questions related to ZBO cryogenic fluid management of propellants in space.

Astronaut Joseph Acaba wearing glasses and a black T-shirt is half standing, suspended in microgravity next to the ZBOT experiment in the Microgravity Science Glovebox (MSG) Unit aboard the station. The MSG is a rectangular compartment tightly fitted with various components including the test tank, enclosed in a cylindrical metallic vacuum jacket, sitting on top of a close Fluid Supply Unit (FSU) that is used for fluid thermal conditioning. The space in MSG is further crowded by a reservoir, various entangled hoses and wiring system, a camera and a small laser unit used for Particle Imaging Velocimetry (PIV) diagnostics that measures and visualizes fluid motion in the tank.
Figure 3. Astronaut Joseph M. Acaba installing ZBOT Hardware in the Microgravity Science Glovebox aboard the International Space Station.
Credit: NASA

The ZBOT-1 Experiment: Self-Pressurization & Jet Mixing

The first experiment in the series was carried out on the station in the 2017-2018 timeframe. Figure 3 shows the ZBOT-1 hardware in the Microgravity Science Glovebox (MSG) unit of the station. The main focus of this experiment was to investigate the self-pressurization and boiling that occurs in a sealed tank due to local and global heating, and the feasibility of tank pressure control via subcooled axial jet mixing. In this experiment, the complicated interaction of the jet flow with the ullage (vapor volume) in microgravity was carefully studied. Microgravity jet mixing data was also collected across a wide range of scaled flow and heat transfer parameters to characterize the time constants for tank pressure reduction, and the thresholds for geyser (liquid fountain) formation, including its stability, and penetration depth through the ullage volume. Along with very accurate pressure and local temperature sensor measurements, Particle Image Velocimetry (PIV) was performed to obtain whole-field flow velocity measurements to validate a Computational Fluid Dynamics (CFD) model.

Four pictures side-by-side showing the results of a ZBOT pressure control jet mixing experiment in microgravity. The first picture shows a jet flow distinguished by blue, yellow, and red colored flow pathlines emanating from a flow nozzle in the bottom of the tank. The jet flow impinges on the ullage from below and deforms the ullage that was initially spherical into a shape that resembles the head of a bird with a pointed beak projected to the right. The second picture an experimental image captured by the Particle Imaging Velocimetry diagnostics. Tiny micron-sized particles illuminated by a laser sheet form shiny steak lines against a black background that displays the path of the fluid motion. The experimental pathlines resemble closely the CFD flow pathlines predicted by the CFD simulation as shown in the left-hand side picture. The third image shows a white-light image that captures the shape of the ullage positioned at the top left-hand side of the tank. This experimental image also shows the deformation of the ullage by the jet into a bird-head shaped figure confirming the shape and position of the ullage predicted by the CFD model. The last image shows the CFD prediction of the vortexed thermal structures that are created by the jet flow and represented by blue, yellow, and red temperature contours.
Figure 4. Validation of ZBOT CFD Model Predictions for fluid flow and deformation of a spherical ullage in microgravity by a subcooled liquid jet mixing against ZBOT experimental results: (a) Model prediction of ullage position and deformation and flow vortex structures during subcooled jet mixing; (b) PIV image capture of flow vortex structures during jet mixing; (c) Ullage deformation captured by white light imaging; and (d) CFD model depiction of temperature contours during subcooled jet mixing. (ZBOT-1 Experiment, 2018)
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

Some of the interesting findings of the ZBOT-1experiment are as follows:

  1. Provided the first tank self-pressurization rate data in microgravity under controlled conditions that can be used for estimating the tank insulation requirements. Results also showed that classical self-pressurization is quite fragile in microgravity and nucleate boiling can occur at hotspots on the tank wall even at moderate heat fluxes that do not induce boiling on Earth. 
  2. Proved that ZBO pressure control is feasible and effective in microgravity using subcooled jet mixing, but also demonstrated that microgravity ullage-jet interaction does not follow the expected classical regime patterns (see Figure 4).
  3. Enabled observation of unexpected cavitation during subcooled jet mixing, leading to massive phase change at both sides of the screened Liquid Acquisition Device (LAD) (see Figure 5). If this type of phase change occurs in a propellant tank, it can lead to vapor ingestion through the LAD and disruption of liquid flow in the transfer line, potentially leading to engine failure.
  4. Developed a state-of-the-art two-phase CFD model validated by over 30 microgravity case studies (an example of which is shown in Figure 4). ZBOT CFD models are currently used as an effective tool for propellant tank scaleup design by several aerospace companies participating in the NASA tipping point opportunity and the NASA Human Landing System (HLS) program.
The left-hand picture shows an intact large hemispherical bubble (vapor ullage) at the top of the tank before the jet mixing starts. The right-hand picture shows the tank filled by numerous small sized bubbles that were created by an unexpected cavitation phase change phenomena when the pressure in the tank suddenly dropped due to the subcooled jet mixing operation.
Figure 5. White light image captures of the intact single hemispherical ullage in ZBOT tank before depressurization by the subcooled jet (left) and after subcooled jet mixing pressure collapse that led to massive phase change bubble generation due to cavitation at the LAD (right). (ZBOT-1 Experiment, 2018).
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

The ZBOT-NC Experiment: Non-Condensable Gas Effects

Non-condensable gases (NCGs) are used as pressurants to extract liquid for engine operations and tank-to-tank transfer. The second experiment, ZBOT-NC will investigate the effect of NCGs on the sealed tank self-pressurization and on pressure control by axial jet mixing. Two inert gases with quite different molecular sizes, Xenon, and Neon, will be used as the non-condensable pressurants. To achieve pressure control or reduction, vapor molecules must reach the liquid-vapor interface that is being cooled by the mixing jet and then cross the interface to the liquid side to condense.

This study will focus on how in microgravity the non-condensable gases can slow down or resist the transport of vapor molecules to the liquid-vapor interface (transport resistance) and will clarify to what extent they may form a barrier at the interface and impede the passage of the vapor molecules across the interface to the liquid side (kinetic resistance). By affecting the interface conditions, the NCGs can also change the flow and thermal structures in the liquid.

ZBOT-NC will use both local temperature sensor data and uniquely developed Quantum Dot Thermometry (QDT) diagnostics to collect nonintrusive whole-field temperature measurements to assess the effect of the non-condensable gases during both self-pressurization heating and jet mixing/cooling of the tank under weightlessness conditions. This experiment is scheduled to fly to the International Space Station in early 2025, and more than 300 different microgravity tests are planned. Results from these tests will also enable the ZBOT CFD model to be further developed and validated to include the non-condensable gas effects with physical and numerical fidelity.

The ZBOT-DP Experiment: Droplet Phase Change Effects

ZBO active pressure control can also be accomplished via injection of subcooled liquid droplets through an axial spray-bar directly into the ullage or vapor volume. This mechanism is very promising, but its performance has not yet been tested in microgravity. Evaporation of droplets consumes heat that is supplied by the hot vapor surrounding the droplets and produces vapor that is at a much lower saturation temperature. As a result, both the temperature and the pressure of the ullage vapor volume are reduced. Droplet injection can also be used to cool down the hot walls of an empty propellant tank before a tank-to-tank transfer or filling operation. Furthermore, droplets can be created during the propellant sloshing caused by acceleration of the spacecraft, and these droplets then undergo phase change and heat transfer. This heat transfer can cause a pressure collapse that may lead to cavitation or a massive liquid-to-vapor phase change. The behavior of droplet populations in microgravity will be drastically different compared to that on Earth.

The ZBOT-DP experiment will investigate the disintegration, coalescence (droplets merging together), phase change, and transport and trajectory characteristics of droplet populations and their effects on the tank pressure in microgravity. Particular attention will also be devoted to the interaction of the droplets with a heated tank wall, which can lead to flash evaporation subject to complications caused by the Liedenfrost effect (when liquid droplets propel away from a heated surface and thus cannot cool the tank wall). These complicated phenomena have not been scientifically examined in microgravity and must be resolved to assess the feasibility and performance of droplet injection as a pressure and temperature control mechanism in microgravity.

Back to Planet Earth

This NASA-sponsored fundamental research is now helping commercial providers of future landing systems for human explorers. Blue Origin and Lockheed Martin, participants in NASA’s Human Landing Systems program, are using data from the ZBOT experiments to inform future spacecraft designs.

Cryogenic fluid management and use of hydrogen as a fuel are not limited to space applications. Clean green energy provided by hydrogen may one day fuel airplanes, ships, and trucks on Earth, yielding enormous climate and economic benefits. By forming the scientific foundation of ZBO cryogenic fluid management for space exploration, the ZBOT science experiments and CFD model development will also help to reap the benefits of hydrogen as a fuel here on Earth. 

PROJECT LEAD

Dr. Mohammad Kassemi (Dept Mechanical & Aerospace Engineering, Case Western Reserve University)

SPONSORING ORGANIZATION

Biological and Physical Sciences (BPS) Division, NASA Science Mission Directorate (SMD)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Space Cloud Watch Needs Your Photos of Night-Shining Clouds 
      Noctilucent Clouds observed from Bozeman, MT on 16 July 2009 at 4:29 MDT. The Space Cloud Watch project needs more photos like this one to diagnose changes in our atmosphere! Photo credit: Dr. Joseph A Shaw Noctilucent or night-shining clouds are rare, high-altitude clouds that glow with a blue silvery hue at dusk or dawn when the sun shines on them from below the horizon. These ice clouds typically occur near the north and south poles but are increasingly being reported at mid- and low latitudes. Observing them helps scientists better understand how human activities may affect our atmosphere.
      Now, the Space Cloud Watch project is asking you to report your own observations of noctilucent clouds and upload your own photographs. Combined with satellite data and model simulations, your data can help us figure out why these noctilucent clouds are suddenly appearing at mid-low latitudes, where temperatures are usually too warm for them to form.
       “I find these clouds fascinating and can’t wait to see the amazing pictures,” said project lead Dr. Chihoko Cullens from the University of Colorado, Boulder Laboratory for Atmospheric and Space Physics. 
      Did you see or photograph any night-shining clouds? Upload them here. Later, the science team will transfer them to a site on the Zooniverse platform where you or other volunteers can help examine them and identify wave structures in the cloud images.
      If you love clouds, NASA has more citizen science projects for you. Try Cloudspotting on Mars, Cloudspotting on Mars: Shapes, or GLOBE Observer Clouds!
      Share








      Details
      Last Updated May 15, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists


      Article


      20 hours ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      6 days ago
      2 min read Amateur Radio Scientists Shine at the 2025 HamSCI Workshop


      Article


      2 weeks ago
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By European Space Agency
      Are you passionate about space and looking to build a long-term career in the European space sector? Do you have two to three years of professional experience and a Master’s degree? The European Space Agency is offering a unique opportunity through its Junior Professional Programme (JPP), designed to cultivate the next generation of space professionals. If you dream of contributing to cutting-edge space missions and working in an international, dynamic environment, this programme is your gateway to an exciting future at ESA. Apply now to join us as a Junior Professional!
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth. 
      The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality. 
      Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.  
      Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads. 
      Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts. 
      While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.  
      Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.  
      Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.  
      With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials. 
      The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.  
      The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.    
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/  
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      STMD Solicitations and Opportunities
      Technology
      Share
      Details
      Last Updated May 13, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
    • By NASA
      Credit: NASA The Trump-Vance Administration released toplines of the President’s budget for Fiscal Year 2026 on Friday. The budget accelerates human space exploration of the Moon and Mars with a fiscally responsible portfolio of missions.
      “This proposal includes investments to simultaneously pursue exploration of the Moon and Mars while still prioritizing critical science and technology research,” said acting NASA Administrator Janet Petro. “I appreciate the President’s continued support for NASA’s mission and look forward to working closely with the administration and Congress to ensure we continue making progress toward achieving the impossible.”
      Increased commitment to human space exploration in pursuit of exploration of both the Moon and Mars. By allocating more than $7 billion for lunar exploration and introducing $1 billion in new investments for Mars-focused programs, the budget ensures America’s human space exploration efforts remain unparalleled, innovative, and efficient. Refocus science and space technology resources to efficiently execute high priority research. Consistent with the administration’s priority of returning to the Moon before China and putting an American on Mars, the budget will advance priority science and research missions and projects, ending financially unsustainable programs including Mars Sample Return. It emphasizes investments in transformative space technologies while responsibly shifting projects better suited for private sector leadership. Transition the Artemis campaign to a more sustainable, cost-effective approach to lunar exploration. The SLS (Space Launch System) rocket and Orion capsule will be retired after Artemis III, paving the way for more cost-effective, next-generation commercial systems that will support subsequent NASA lunar missions. The budget also ends the Gateway Program, with the opportunity to repurpose already produced components for use in other missions. International partners will be invited to join these renewed efforts, expanding opportunities for meaningful collaboration on the Moon and Mars. Continue the process of transitioning the International Space Station to commercial replacements in 2030, focusing onboard research on efforts critical to the exploration of the Moon and Mars. The budget reflects the upcoming transition to a more cost-effective, open commercial approach to human activities in low Earth orbit by reducing the space station’s crew size and onboard research, preparing for the safe decommissioning of the station and its replacement by commercial space stations. Work to minimize duplication of efforts and most efficiently steward the allocation of American taxpayer dollars. This budget ensures NASA’s topline enables a financially sustainable trajectory to complete groundbreaking research and execute the agency’s bold mission. Focus NASA’s resources on its core mission of space exploration. This budget ends climate-focused “green aviation” spending while protecting the development of technologies with air traffic control and other U.S. government and commercial applications, producing savings. This budget also will ensure continued elimination any funding toward misaligned DEIA initiatives, instead designating that money to missions capable of advancing NASA’s core mission. NASA will continue to inspire the next generation of explorers through exciting, ambitious space missions that demonstrate American leadership in space. NASA will coordinate closely with its partners to execute these priorities and investments as efficiently and effectively as possible.
      Building on the President’s promise to increase efficiency this budget pioneers a focused, innovative, and fiscally-responsible path to America’s next great era of human space exploration.
      Learn more about the President’s budget request for NASA:
      https://www.nasa.gov/budget
      -end-
      Bethany Stevens
      Headquarters, Washington
      771-216-2606
      bethany.c.stevens@nasa.gov
      Share
      Details
      Last Updated May 02, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Budget & Annual Reports View the full article
  • Check out these Videos

×
×
  • Create New...