Members Can Post Anonymously On This Site
NESC Publications – Based on NESC Assessments
-
Similar Topics
-
By NASA
NASA Glenn Research Center High School Engineering Institute participants, left to right: Evan Ricchetti, Edan Liahovetsky, and Doris Chen, prepare to add weights to their rover to test the effectiveness of their wheel grouser designs on Friday, July 18, 2025. Credit: NASA/Jef Janis This summer, NASA’s Glenn Research Center in Cleveland hosted the NASA Glenn High School Engineering Institute, a free, work-based learning experience designed to prepare rising high school juniors and seniors for careers in the aerospace workforce.
“The institute immerses students in NASA’s work, providing essential career readiness tools for future science, technology, engineering, and mathematics-focused academic and professional pursuits,” said Jerry Voltz of NASA Glenn’s Office of STEM Engagement.
Throughout the five-day sessions (offered three separate weeks in July), students used authentic NASA mission content and collaborated with Glenn’s technical experts. They gained a deeper understanding of the engineering design process, developed practical engineering solutions to real-world challenges, and tested prototypes to address key mission areas such as:
Acoustic dampening: How can we reduce noise pollution from jet engines? Power management and distribution: How can we develop a smart power system for future space stations? Simulated lunar operations: Can we invent tires that don’t use air? NASA Glenn Research Center High School Engineering Institute participants, left to right: Adriana Pudloski, Anadavel Sakthi, Aditya Rohatgi, and Alexa Apshago, make modifications to the control system program for their rover on Friday, July 18, 2025. Credit: NASA/Jef Janis Voltz said he hoped students left the program with three key takeaways: a deeper curiosity and excitement for STEM careers, firsthand insight into how cutting-edge technology developed in Cleveland contributes to NASA’s most prominent missions, and most importantly, a feeling of empowerment gained from engaging with some of NASA’s brightest minds in the field.
Return to Newsletter View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA researcher Darren Nash monitors experimental communications equipment on NASA’s Pilatus PC-12 during a flight test over NASA’s Glenn Research Center in Cleveland on April 17, 2025.NASA/Sara Lowthian-Hanna NASA engineers are exploring how the technology used in existing cellphone networks could support the next generation of aviation.
In April and May, researchers at NASA’s Glenn Research Center in Cleveland built two specialized radio systems to study how well fifth-generation cellular network technology, known as 5G, can handle the demands of air taxi communications.
“The goal of this research is to understand how wireless cellphone networks could be leveraged by the aviation industry to enable new frontiers of aviation operations,” said Casey Bakula, lead researcher for the project, who is based at Glenn. “The findings of this work could serve as a blueprint for future aviation communication network providers, like satellite navigation providers and telecommunications companies, and help guide the Federal Aviation Administration’s plan for future advanced air mobility network requirements in cities.”
Instead of developing entirely new standards for air taxi communications, NASA is looking to see if the aviation industry could leverage the expertise, experience, and investments made by the cellular industry towards the development of reliable, secure, and scalable aviation networks. If 5G networks could provide an “80% solution” to the challenge, researchers can focus on identifying the remaining 20% that would need to be adapted to meet the needs of the air taxi industry.
NASA researchers Darren Nash, left, and Brian Kachmar review signal data captured from experimental communications equipment onboard NASA’s Pilatus PC-12 on April 17, 2025.NASA/Sara Lowthian-Hanna 5G networks can manage a lot of data at once and have very low signal transmission delay compared to satellite systems, which could make them ideal for providing location data between aircraft in busy city skies. Ground antennas and networks in cities can help air taxis stay connected as they fly over buildings, making urban flights safer.
To conduct their tests, NASA researchers set up a system that meets current 5G standards and would allow for future improvements in performance. They placed one radio in the agency’s Pilatus PC-12 aircraft and set up another radio on the roof of Glenn’s Aerospace Communications Facility building. With an experimental license from the Federal Aviation Administration (FAA) to conduct flights, the team tested signal transmissions using a radio frequency band the Federal Communications Commission dedicated for the safe testing of drones and other uncrewed aircraft systems.
During testing, NASA’s PC-12 flew various flight patterns near Glenn. The team used some of the flight patterns to measure how the signal could weaken as the aircraft moved away from the ground station. Other patterns focused on identifying areas where nearby buildings might block signals, potentially causing interference or dead zones. The team also studied how the aircraft’s angle and position relative to the ground station affected the quality of the connection.
These initial tests provided the NASA team an opportunity to integrate its new C-Band radio testbed onto the aircraft, verify its basic functionality, and the operation of the corresponding ground station, as well as refine the team’s test procedures. The successful completion of these activities allows the team to begin research on how 5G standards and technologies could be utilized in existing aviation bands to provide air-to-ground and aircraft-to-aircraft communications services.
Experimental communications equipment is secure and ready for flight test evaluation in the back of NASA’s Pilatus PC-12 at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna In addition to meeting these initial test objectives, the team also recorded and verified the presence of propeller modulation. This is a form of signal degradation caused by the propeller blades of the aircraft partially blocking radio signals as they rotate. The effect becomes more significant as aircraft fly at the lower altitudes air taxis are expected to operate. The airframe configuration and number of propellers on some of the new air taxi models may cause increased propeller modulation effects, so NASA researchers will study this further.
NASA research will provide baseline performance data that the agency will share with the FAA and the advanced air mobility sector of the aviation industry, which explores new air transportation options. Future research looking into cellular network usage will focus on issues such as maximum data speeds, signal-to-noise ratios, and synchronization between aircraft and ground systems. Researchers will be able to use NASA’s baseline data to measure the potential of new changes or features to communications systems.
Future aircraft will need to carry essential communications systems for command and control, passenger safety, and coordination with other aircraft to avoid collisions. Reliable wireless networks offer the possibility for safe operations of air taxis, particular in cities and other crowded areas.
This work is led by NASAs Air Mobility Pathfinders project under the Airspace Operations and Safety Program in support of NASA’s Advanced Air Mobility mission.
NASA Pilot Mark Russell emerges from NASA’s Pilatus PC-12 after mobile communication tests at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna Share
Details
Last Updated Jul 23, 2025 Related Terms
Armstrong Flight Research Center Aeronautics Air Mobility Pathfinders project Air Traffic Solutions Airspace Operations and Safety Program Ames Research Center Drones & You Glenn Research Center Langley Research Center NASA Aircraft Explore More
3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator
Article 2 hours ago 4 min read GRUVE Lab
The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS…
Article 5 hours ago 4 min read GVIS History
As part of NASA Glenn’s Scientific Computing and Visualization Team, the GVIS Lab has a…
Article 5 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Boles.pdf
Jessica Boles
University of California, Berkeley
This project will develop piezoelectric-based power conversion for small power systems on the lunar surface. These piezoelectric systems can potentially offer high power density to significantly reduce size, weight, and cost. They can also offer high efficiency as well as resistance to the extreme lunar environment with its expected prolonged exposure to extreme cold and radiation. The effort will build and test prototype piezoelectric DC-to-DC power converters and DC-to-DC power supplies.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
October 1, 2022 – September 30, 2023
This eighth annual report provides an overall highlight of research results published from October 1, 2022 to September 30, 2023 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2022 – September 30, 2023) (PDF, 19.6 MB).
List of Archived ISS Publications October 1, 2022 – September 30, 2023. (PDF, 1.2 MB)
October 1, 2021 – September 30, 2022
This seventh annual report provides an overall highlight of research results published from October 1, 2021 to September 30, 2022 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2021 – September 30, 2022) (PDF, 7.0 MB).
List of Archived ISS Publications October 1, 2021 – September 30, 2022. (PDF, 1.2 MB)
October 1, 2020 – October 1, 2021
This sixth annual report provides an overall highlight of research results published from October 1, 2020 to October 1, 2021 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2020 – October 1, 2021) (PDF, 7.0 MB)
October 1, 2019 – October 1, 2020
This fifth annual report provides an overall highlight of research results published from October 1, 2019 to October 1, 2020 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2019 – October 1, 2020) (PDF, 7.0 MB)
October 1, 2018 – October 1, 2019
This fourth annual report provides an overall highlight of research results published from October 1, 2018 to October 1, 2019 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2018 – October 1, 2019) (PDF, 3.0 MB)
October 1, 2017 – October 1, 2018
This third annual report provides an overall highlight of research results published from October 1, 2017 to October 1, 2018 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2017 – October 1, 2018) (PDF, 5.8MB)
October 1, 2016 – October 1, 2017
This second annual report provides an overall highlight of research results published from October 1, 2016 to October 1, 2017 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2016 – October 1, 2017) (PDF, 5MB)
October 1, 2015 – October 1, 2016
This first annual report provides an overall highlight of research results published from October 1, 2015 to October 1, 2016 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2015 – October 1, 2016) (PDF, 2.6MB)
Keep Exploring Discover More Topics
Space Station Research Results
Space Station Research and Technology
ISS National Laboratory
Opportunities and Information for Researchers
View the full article
-
By European Space Agency
The European Space Agency (ESA) has jointly signed a contract with Thales Alenia Space to develop Element #2 of its High-throughput Digital and Optical Network (HydRON), an advanced laser-based satellite system that will transform the way we communicate in space. This phase will establish a satellite collector in low Earth orbit (LEO), capable of connecting different orbital layers using cutting-edge optical technology.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.