Jump to content

20 Years Ago: First Image of Earth from Mars and Other Postcards of Home


Recommended Posts

  • Publishers
Posted

On March 8, 2004, the Mars Exploration Rover Spirit took the first image of Earth from the surface of another planet. The Earth appearing as nothing more than a bright star provided a new perspective on our home planet, a perspective reshaped over the past eight decades as cameras aboard rockets and spacecraft traveled farther and farther away. From sounding rockets in the 1940s and Earth orbiting satellites in the early 1960s to spacecraft and people traveling to the Moon in the late 1960s and early 1970s and since then to spacecraft exploring all reaches of our solar system, the images of Earth they sent back expanded our horizons while showing an ever-smaller pale blue dot in the vastness of space.

The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004 The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014
Left: The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004. Right: The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014.

Shortly after landing in Mars’ Gusev Crater on Jan. 4, 2004, Spirit began sending to Earth remarkable photos of its surroundings. On March 8, it turned its camera skyward in an attempt to photograph the Martian moon Deimos partially eclipsing the Sun as it transited across its disc. Shortly before sunrise, Spirit’s camera managed to capture Earth as a bright star, appearing much as Venus does to terrestrial observers. This marked the first photograph of Earth from another planetary surface. Nearly a decade passed before another rover, the Mars Science Laboratory Curiosity, took another photograph of Earth from its location in Mars’ Gale Crater. The image taken on Jan. 31, 2014, from 99 million miles away, also captured the Moon. These images, and others taken of Earth from ever-more distant vantage points over the past eight decades, provided a new perspective of our home planet’s place in our solar system. Enjoy the following postcards of Earth over the decades.

The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles The first photograph of Earth taken from orbit, by the Explorer 6 satellite The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960
Left: The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles. Image credit: courtesy White Sands Missile Range/Applied Physics Laboratory. Middle: The first photograph of Earth taken from orbit, by the Explorer 6 satellite. Right: The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960.

On Oct. 24, 1946, more than 10 years before the launch of the first artificial satellite Sputnik, scientists at the White Sands Missile Range in New Mexico placed a camera on top of a captured German V-2 ballistic missile. As the rocket flew to an altitude of about 65 miles – just above the generally recognized border of outer space – the 35-mm motion picture camera snapped a frame every one and a half seconds. Minutes later, the missile came crashing back down and slammed into the ground at more than 340 miles per hour, but the film survived and gave us our first glimpse of Earth from space. On Aug. 14, 1959, the Explorer 6 satellite took the first photograph of Earth from orbit about 17,000 miles high, but the image lacked detail. On April 1, 1960, from an orbital altitude of about 450 miles, the TIROS-1 weather satellite returned the first of its 23,000 television images of the Earth, most of them of sufficient quality for the satellite’s main purpose, weather forecasting.

The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966 The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966 The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967
Left: The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966. Middle: The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966. Right: The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967.

The Soviet Molniya 1-3 communications satellite took the first photograph showing the Earth as a full disk on May 30, 1966, although the image quality was somewhat poor. On Dec. 11, 1966, the ATS-1 advanced technology satellite beamed back the first photograph of Earth from geostationary orbit 22,300 miles above Ecuador. The Department of Defense Gravity Experiment (DODGE) satellite returned the first color image of the full Earth in August 1967.

The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP) The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967
Left: The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP). Image credit: courtesy LOIRP.  Right: The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967.

The primary purpose of early robotic spacecraft to the Moon was to prepare for the crewed Apollo missions that followed, including extensive photography of the lunar terrain from orbit and from the surface. The first of five Lunar Orbiter spacecraft designed to map the Moon’s surface from orbit took the first photograph of Earth from lunar distances on Aug. 23, 1966. A digital reconstruction of the original frame in 2008 as part of the Lunar Orbiter Image Recovery Project removed the scan lines and other imperfections. The Surveyor 3 robotic lander, later visited by the Apollo 12 astronauts, took the first photograph of Earth from the lunar surface on April 30, 1967.

The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968 The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969 The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972 Earth and Moon photographed during the Artemis I uncrewed mission in 2022
Left: The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968. Middle left: The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969. Middle right: The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972. Right: Earth and Moon photographed during the Artemis I uncrewed mission in 2022.

The Apollo missions of the late 1960s and early 1970s returned thousands of stunning and memorable images of humanity’s first exploration of another world. Among them are photographs of the Earth taken by the astronauts that show how small and fragile our planet can appear against the blackness and vastness of space. Arguably, the most famous is the Earthrise photos taken during Apollo 8, the first crewed mission to orbit the Moon in December 1968. The image of the smooth blue ball of Earth appearing suspended over the battered gray lunar terrain provided inspiration for the ecology movement of the time. In July 1969, the first human lunar landing mission, Apollo 11, returned many iconic photographs of Neil A. Armstrong and Edwin E. “Buzz” Aldrin on the surface, and also included the first image of the Earth taken by an astronaut on the Moon. In December 1972, astronauts on the final Apollo lunar landing mission, Apollo 17, took the famous Blue Marble image of the Earth from 72,000 miles away on their way to the Moon. More recently, in November 2012, the uncrewed Artemis I mission imaged the Moon and Earth together, from a distance of 268,563 miles from Earth.

A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990
Left: A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury. Middle: The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond. Right: The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990. 

As planetary spacecraft carried increasingly sophisticated instruments in the 1970s, some turned their cameras toward the Earth as they departed on their long voyages of exploration. In November 1973, a few days after Mariner 10 launched on its mission to explore Venus and Mercury, it snapped separate photographs of the Earth and the Moon, that technicians combined into a composite photo. On Sept. 18, 1977, at a distance of 7.25 million miles, the Jupiter-bound Voyager 1 snapped the first photograph of the Earth-Moon system in a single frame, providing an impression of the view from a spacecraft approaching our home planet. The Galileo spacecraft did exactly that – on Dec. 8, 1990, more than two years after its launch, it passed within 600 miles of Earth, using the planet for a gravity assist to reach Jupiter. During the fly-by, Galileo used its sophisticated instruments and cameras to study Earth as an unexplored planet and detected chemical signatures in atmospheric trace elements associated with life-form activity. 

Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990
Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990.

Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth
Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth.

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controller permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited.

MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010
MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010.

Twenty years later, and from a very different part of the solar system, came another family portrait of the planets. From near the orbit of Mercury, the MESSENGER spacecraft took 34 images on Nov. 3 and 16, 2010, that engineers stitched together. The composite shows six planets, Venus, Earth, Jupiter, Mars, Mercury, and Saturn, and even several planetary satellites including the Moon and Jupiter’s four Galilean moons Callisto, Ganymede, Europa, and Io.

Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007
Left: Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003. Middle: Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003. Right: Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007.

Even before Spirit returned the first photo of Earth from the surface of Mars, spacecraft in orbit around the Red Planet took amazing photos of the Earth-Moon system with their telescopic high-resolution cameras. Mars Global Surveyor took the first photograph of the Earth-Moon system from Mars orbit in May 2003, the two planets 86 million miles apart. Given the Moon’s position in its orbit around Earth, the two bodies appeared close together. Two months later, in July 2003, the European Space Agency’s (ESA) Mars Express spacecraft photographed them appearing much further apart, given the Moon’s orbital position. In October 2007, Mars Reconnaissance Orbiter used its HiRISE camera to take a more detailed shot of the Earth-Moon system. Because Earth orbits closer to the Sun than Mars, it goes through phases, much as Mercury and Venus do as viewed from Earth.

The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013
The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013.

On July 19, 2013, the Cassini spacecraft in orbit around Saturn took a series of images from a distance of about 750,000 miles as the planet eclipsed the Sun. In the event dubbed The Day the Earth Smiled, people on Earth received notification in advance that Cassini would be taking their picture from 900 million miles away, and were encouraged to smile at its camera. In addition to the Earth and Moon, Cassini captured Venus, Mars, and seven of Saturn’s satellites in the photograph.

The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013 The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023
Left: The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013. Right: The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023.

On the same day that Cassini imaged Earth and other planets from Saturn, the MESSENGER spacecraft in orbit around Mercury, during a search for possible moons orbiting the small planet, took a photograph of the Earth-Moon system from 61 million miles away. The Parker Solar Probe, during its 16th close pass of the Sun in June 2023, took a series of photographs through the Sun’s corona, imaging several planets including Earth in the process. Engineers stitched the images together to create an amazing video of the solar corona and a coronal mass ejection. The view is from well inside Mercury’s orbit.

The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020
The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020.

The ESA Solar Orbiter spacecraft’s primary objectives focus on studying the Sun from close distances. These orbits enable it to photograph several planets at once. On Nov. 18, 2020, Solar Orbiter imaged Venus, Earth, and Mars in one frame.

We hope you enjoyed this review of how photographs of Earth over the past 80 years have changed our perspectives of our home planet, and also of our own place in the universe. Future human space explorers, whatever their destinations, will always look back and try to find their home planet in whatever sky it may shine, and hopefully share their experiences with us through photographs we can only dream about today.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By NASA
      National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
      “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
      Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
      Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
      The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
      Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
      “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
      Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
      The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
      For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
      View the full article
    • By European Space Agency
      The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from the NASA/ESA/CSA James Webb Space Telescope, it does not have an Earth-like atmosphere.
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Webb Narrows Atmospheric Possibilities for Earth-sized Exoplanet TRAPPIST-1 d
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. Full illustration and caption show below. Credits:
      NASA, ESA, CSA, Joseph Olmsted (STScI) The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from NASA’s James Webb Space Telescope, it does not have an Earth-like atmosphere.
      “Ultimately, we want to know if something like the environment we enjoy on Earth can exist elsewhere, and under what conditions. While NASA’s James Webb Space Telescope is giving us the ability to explore this question in Earth-sized planets for the first time, at this point we can rule out TRAPPIST-1 d from a list of potential Earth twins or cousins,” said Caroline Piaulet-Ghorayeb of the University of Chicago and Trottier Institute for Research on Exoplanets (IREx) at Université de Montréal, lead author of the study published in The Astrophysical Journal.
      Planet TRAPPIST-1 d
      The TRAPPIST-1 system is located 40 light-years away and was revealed as the record-holder for most Earth-sized rocky planets around a single star in 2017, thanks to data from NASA’s retired Spitzer Space Telescope and other observatories. Due to that star being a dim, relatively cold red dwarf, the “habitable zone” or “Goldilocks zone” – where the planet’s temperature may be just right, such that liquid surface water is possible – lies much closer to the star than in our solar system. TRAPPIST-1 d, the third planet from the red dwarf star, lies on the cusp of that temperate zone, yet its distance to its star is only 2 percent of Earth’s distance from the Sun. TRAPPIST-1 d completes an entire orbit around its star, its year, in only four Earth days.
      Webb’s NIRSpec (Near-Infrared Spectrograph) instrument did not detect molecules from TRAPPIST-1 d that are common in Earth’s atmosphere, like water, methane, or carbon dioxide. However, Piaulet-Ghorayeb outlined several possibilities for the exoplanet that remain open for follow-up study.
      “There are a few potential reasons why we don’t detect an atmosphere around TRAPPIST-1 d. It could have an extremely thin atmosphere that is difficult to detect, somewhat like Mars. Alternatively, it could have very thick, high-altitude clouds that are blocking our detection of specific atmospheric signatures — something more like Venus. Or, it could be a barren rock, with no atmosphere at all,” Piaulet-Ghorayeb said.
      Image: TRAPPIST-1 d (Artist’s Concept)
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. The TRAPPIST-1 system is intriguing to scientists for a few reasons. Not only does the system have seven Earth-sized rocky worlds, but its star is a red dwarf, the most common type of star in the Milky Way galaxy. If an Earth-sized world can maintain an atmosphere here, and thus have the potential for liquid surface water, the chance of finding similar worlds throughout the galaxy is much higher. In studying the TRAPPIST-1 planets, scientists are determining the best methods for separating starlight from potential atmospheric signatures in data from NASA’s James Webb Space Telescope. The star TRAPPIST-1’s variability, with frequent flares, provides a challenging testing ground for these methods. NASA, ESA, CSA, Joseph Olmsted (STScI) The Star TRAPPIST-1
      No matter what the case may be for TRAPPIST-1 d, it’s tough being a planet in orbit around a red dwarf star. TRAPPIST-1, the host star of the system, is known to be volatile, often releasing flares of high-energy radiation with the potential to strip off the atmospheres of its small planets, especially those orbiting most closely. Nevertheless, scientists are motivated to seek signs of atmospheres on the TRAPPIST-1 planets because red dwarf stars are the most common stars in our galaxy. If planets can hold on to an atmosphere here, under waves of harsh stellar radiation, they could, as the saying goes, make it anywhere.
      “Webb’s sensitive infrared instruments are allowing us to delve into the atmospheres of these smaller, colder planets for the first time,” said Björn Benneke of IREx at Université de Montréal, a co-author of the study. “We’re really just getting started using Webb to look for atmospheres on Earth-sized planets, and to define the line between planets that can hold onto an atmosphere, and those that cannot.”
      The Outer TRAPPIST-1 Planets
      Webb observations of the outer TRAPPIST-1 planets are ongoing, which hold both potential and peril. On the one hand, Benneke said, planets e, f, g, and h may have better chances of having atmospheres because they are further away from the energetic eruptions of their host star. However, their distance and colder environment will make atmospheric signatures more difficult to detect, even with Webb’s infrared instruments.
      “All hope is not lost for atmospheres around the TRAPPIST-1 planets,” Piaulet-Ghorayeb said. “While we didn’t find a big, bold atmospheric signature at planet d, there is still potential for the outer planets to be holding onto a lot of water and other atmospheric components.”
      “As NASA leads the way in searching for life outside our solar system, one of the most important avenues we can pursue is understanding which planets retain their atmospheres, and why,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “NASA’s James Webb Space Telescope has pushed our capabilities for studying exoplanet atmospheres further than ever before, beyond extreme worlds to some rocky planets – allowing us to begin confirming theories about the kind of planets that may be potentially habitable. This important groundwork will position our next missions, like NASA’s Habitable Worlds Observatory, to answer a universal question: Are we alone?”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about the TRAPPIST-1 system
      Read more about changing views on the “habitable zone”
      Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
      Video: How to Study Exoplanets
      Video: How do we learn about a planet’s Atmosphere?
      Learn more about exoplanets
      Read more about studying TRAPPIST-1 c with Webb
      Read more about studying TRAPPIST-1 b with Webb
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Aug 13, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Red Dwarfs Science & Research Stars Studying Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...