Jump to content

20 Years Ago: First Image of Earth from Mars and Other Postcards of Home


Recommended Posts

  • Publishers
Posted

On March 8, 2004, the Mars Exploration Rover Spirit took the first image of Earth from the surface of another planet. The Earth appearing as nothing more than a bright star provided a new perspective on our home planet, a perspective reshaped over the past eight decades as cameras aboard rockets and spacecraft traveled farther and farther away. From sounding rockets in the 1940s and Earth orbiting satellites in the early 1960s to spacecraft and people traveling to the Moon in the late 1960s and early 1970s and since then to spacecraft exploring all reaches of our solar system, the images of Earth they sent back expanded our horizons while showing an ever-smaller pale blue dot in the vastness of space.

The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004 The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014
Left: The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004. Right: The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014.

Shortly after landing in Mars’ Gusev Crater on Jan. 4, 2004, Spirit began sending to Earth remarkable photos of its surroundings. On March 8, it turned its camera skyward in an attempt to photograph the Martian moon Deimos partially eclipsing the Sun as it transited across its disc. Shortly before sunrise, Spirit’s camera managed to capture Earth as a bright star, appearing much as Venus does to terrestrial observers. This marked the first photograph of Earth from another planetary surface. Nearly a decade passed before another rover, the Mars Science Laboratory Curiosity, took another photograph of Earth from its location in Mars’ Gale Crater. The image taken on Jan. 31, 2014, from 99 million miles away, also captured the Moon. These images, and others taken of Earth from ever-more distant vantage points over the past eight decades, provided a new perspective of our home planet’s place in our solar system. Enjoy the following postcards of Earth over the decades.

The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles The first photograph of Earth taken from orbit, by the Explorer 6 satellite The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960
Left: The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles. Image credit: courtesy White Sands Missile Range/Applied Physics Laboratory. Middle: The first photograph of Earth taken from orbit, by the Explorer 6 satellite. Right: The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960.

On Oct. 24, 1946, more than 10 years before the launch of the first artificial satellite Sputnik, scientists at the White Sands Missile Range in New Mexico placed a camera on top of a captured German V-2 ballistic missile. As the rocket flew to an altitude of about 65 miles – just above the generally recognized border of outer space – the 35-mm motion picture camera snapped a frame every one and a half seconds. Minutes later, the missile came crashing back down and slammed into the ground at more than 340 miles per hour, but the film survived and gave us our first glimpse of Earth from space. On Aug. 14, 1959, the Explorer 6 satellite took the first photograph of Earth from orbit about 17,000 miles high, but the image lacked detail. On April 1, 1960, from an orbital altitude of about 450 miles, the TIROS-1 weather satellite returned the first of its 23,000 television images of the Earth, most of them of sufficient quality for the satellite’s main purpose, weather forecasting.

The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966 The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966 The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967
Left: The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966. Middle: The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966. Right: The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967.

The Soviet Molniya 1-3 communications satellite took the first photograph showing the Earth as a full disk on May 30, 1966, although the image quality was somewhat poor. On Dec. 11, 1966, the ATS-1 advanced technology satellite beamed back the first photograph of Earth from geostationary orbit 22,300 miles above Ecuador. The Department of Defense Gravity Experiment (DODGE) satellite returned the first color image of the full Earth in August 1967.

The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP) The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967
Left: The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP). Image credit: courtesy LOIRP.  Right: The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967.

The primary purpose of early robotic spacecraft to the Moon was to prepare for the crewed Apollo missions that followed, including extensive photography of the lunar terrain from orbit and from the surface. The first of five Lunar Orbiter spacecraft designed to map the Moon’s surface from orbit took the first photograph of Earth from lunar distances on Aug. 23, 1966. A digital reconstruction of the original frame in 2008 as part of the Lunar Orbiter Image Recovery Project removed the scan lines and other imperfections. The Surveyor 3 robotic lander, later visited by the Apollo 12 astronauts, took the first photograph of Earth from the lunar surface on April 30, 1967.

The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968 The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969 The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972 Earth and Moon photographed during the Artemis I uncrewed mission in 2022
Left: The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968. Middle left: The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969. Middle right: The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972. Right: Earth and Moon photographed during the Artemis I uncrewed mission in 2022.

The Apollo missions of the late 1960s and early 1970s returned thousands of stunning and memorable images of humanity’s first exploration of another world. Among them are photographs of the Earth taken by the astronauts that show how small and fragile our planet can appear against the blackness and vastness of space. Arguably, the most famous is the Earthrise photos taken during Apollo 8, the first crewed mission to orbit the Moon in December 1968. The image of the smooth blue ball of Earth appearing suspended over the battered gray lunar terrain provided inspiration for the ecology movement of the time. In July 1969, the first human lunar landing mission, Apollo 11, returned many iconic photographs of Neil A. Armstrong and Edwin E. “Buzz” Aldrin on the surface, and also included the first image of the Earth taken by an astronaut on the Moon. In December 1972, astronauts on the final Apollo lunar landing mission, Apollo 17, took the famous Blue Marble image of the Earth from 72,000 miles away on their way to the Moon. More recently, in November 2012, the uncrewed Artemis I mission imaged the Moon and Earth together, from a distance of 268,563 miles from Earth.

A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990
Left: A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury. Middle: The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond. Right: The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990. 

As planetary spacecraft carried increasingly sophisticated instruments in the 1970s, some turned their cameras toward the Earth as they departed on their long voyages of exploration. In November 1973, a few days after Mariner 10 launched on its mission to explore Venus and Mercury, it snapped separate photographs of the Earth and the Moon, that technicians combined into a composite photo. On Sept. 18, 1977, at a distance of 7.25 million miles, the Jupiter-bound Voyager 1 snapped the first photograph of the Earth-Moon system in a single frame, providing an impression of the view from a spacecraft approaching our home planet. The Galileo spacecraft did exactly that – on Dec. 8, 1990, more than two years after its launch, it passed within 600 miles of Earth, using the planet for a gravity assist to reach Jupiter. During the fly-by, Galileo used its sophisticated instruments and cameras to study Earth as an unexplored planet and detected chemical signatures in atmospheric trace elements associated with life-form activity. 

Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990
Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990.

Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth
Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth.

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controller permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited.

MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010
MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010.

Twenty years later, and from a very different part of the solar system, came another family portrait of the planets. From near the orbit of Mercury, the MESSENGER spacecraft took 34 images on Nov. 3 and 16, 2010, that engineers stitched together. The composite shows six planets, Venus, Earth, Jupiter, Mars, Mercury, and Saturn, and even several planetary satellites including the Moon and Jupiter’s four Galilean moons Callisto, Ganymede, Europa, and Io.

Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007
Left: Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003. Middle: Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003. Right: Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007.

Even before Spirit returned the first photo of Earth from the surface of Mars, spacecraft in orbit around the Red Planet took amazing photos of the Earth-Moon system with their telescopic high-resolution cameras. Mars Global Surveyor took the first photograph of the Earth-Moon system from Mars orbit in May 2003, the two planets 86 million miles apart. Given the Moon’s position in its orbit around Earth, the two bodies appeared close together. Two months later, in July 2003, the European Space Agency’s (ESA) Mars Express spacecraft photographed them appearing much further apart, given the Moon’s orbital position. In October 2007, Mars Reconnaissance Orbiter used its HiRISE camera to take a more detailed shot of the Earth-Moon system. Because Earth orbits closer to the Sun than Mars, it goes through phases, much as Mercury and Venus do as viewed from Earth.

The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013
The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013.

On July 19, 2013, the Cassini spacecraft in orbit around Saturn took a series of images from a distance of about 750,000 miles as the planet eclipsed the Sun. In the event dubbed The Day the Earth Smiled, people on Earth received notification in advance that Cassini would be taking their picture from 900 million miles away, and were encouraged to smile at its camera. In addition to the Earth and Moon, Cassini captured Venus, Mars, and seven of Saturn’s satellites in the photograph.

The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013 The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023
Left: The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013. Right: The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023.

On the same day that Cassini imaged Earth and other planets from Saturn, the MESSENGER spacecraft in orbit around Mercury, during a search for possible moons orbiting the small planet, took a photograph of the Earth-Moon system from 61 million miles away. The Parker Solar Probe, during its 16th close pass of the Sun in June 2023, took a series of photographs through the Sun’s corona, imaging several planets including Earth in the process. Engineers stitched the images together to create an amazing video of the solar corona and a coronal mass ejection. The view is from well inside Mercury’s orbit.

The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020
The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020.

The ESA Solar Orbiter spacecraft’s primary objectives focus on studying the Sun from close distances. These orbits enable it to photograph several planets at once. On Nov. 18, 2020, Solar Orbiter imaged Venus, Earth, and Mars in one frame.

We hope you enjoyed this review of how photographs of Earth over the past 80 years have changed our perspectives of our home planet, and also of our own place in the universe. Future human space explorers, whatever their destinations, will always look back and try to find their home planet in whatever sky it may shine, and hopefully share their experiences with us through photographs we can only dream about today.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.
      The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI “This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.
      Picking the right aurora
      On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.
      Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.
      While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.
      Coordinating the picture-perfect moment
      Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.
      “The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.
      That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.
      At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.
      “This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.
      “When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”
      A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.
      “This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).
      The future of aurora on Mars
      By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.
      “Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”
      On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

      By Willow Reed
      Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder
      Media Contact: 
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share








      Details
      Last Updated May 14, 2025 Related Terms
      Mars Goddard Space Flight Center MAVEN (Mars Atmosphere and Volatile EvolutioN) View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By NASA
      NASA Glenn Research Center’s Director Dr. Jimmy Kenyon, left, talks with a Youth Tech Academy Red Dragon participant at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA’s Glenn Research Center in Cleveland supported the 26th annual FIRST Robotics Competition Buckeye Regional, April 3-6, at Cleveland State University’s Wolstein Center. This international engineering design challenge combines the excitement of sports with the rigors of STEM. 
      Mavericks Team participants adjust their robot prior to their turn to compete at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn Center Director Dr. Jimmy Kenyon helped kick off this year’s event by addressing the student participants. He shared that NASA Glenn specializes in propulsion and communications, that the center is vital to the region and country, and that “the road to Moon and Mars goes through Ohio” thanks to the center’s contributions to the agency’s missions. He also highlighted several aerospace projects underway at the center and explained how engineering and math skills used in robotics apply to real-life engineering challenges.  
      Fifty-six teams of high school students competed in the robotics competition, which aims to inspire young people to be STEM leaders and innovators by engaging them in mentor-based engineering. 
      Members from the Argonauts Team cheer as their robot competes in the FIRST Robotics Competition Buckeye Regional at Cleveland State University in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn employees offered their time and expertise as mentors, machinists, or volunteers supporting FIRST Robotics teams leading up to the event as well as on competition day.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions 
      Article 21 seconds ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago View the full article
    • By USH
      In recent months, Earth has been experiencing a string of bizarre and unsettling phenomena. Massive power outages have struck Spain and Portugal, with similar blackouts occurring across the globe. Aircraft have inexplicably crashed or fallen from the sky. Lights - streetlamps, billboards, car headlights, even indoor lighting are flickering erratically, and the problem persists. 

      Power failures have disrupted air traffic control centers. Strange, unexplained noises have been heard coming from the sky. In parts of the U.S., blue rain has reportedly fallen. The Schumann Resonance, Earth’s natural electromagnetic frequency, has spiked dramatically. Most disturbing of all, now birds have been seen suddenly dropping dead, either mid-flight or while perched on power lines. 
      It feels as if the planet is enveloped in a powerful, unseen force, an invisible energy field swarming the Earth, disrupting both man-made and natural systems. But where is it coming from? 
      One theory suggests that we may be experiencing the delayed impact of a massive astronomical event that occurred thousands of years ago, such as a supernova, the cataclysmic explosion of a dying star. These cosmic blasts release enormous amounts of electromagnetic radiation, including gamma rays and X-rays, which can travel across space for thousands or even millions of years before reaching other celestial bodies, like Earth. 
      Interestingly, some scientists have speculated that a gamma-ray burst from a distant supernova might have triggered the Ordovician mass extinction around 440 million years ago. If such radiation can wipe out entire ecosystems, could a similar event be silently influencing the strange phenomena we're seeing today? 
      It might sound improbable, but what if Earth is now being bathed in residual energy from a long-past cosmic event, energy that is only just now arriving and interacting with our atmosphere and technology? 
      And if that's true… could these strange occurrences be the early signs of something even more serious to come? 
      Additional: MrMBB333, a well-known YouTuber, is also closely following these remarkable events. He shares daily live footage from around the world and often questions what is truly happening. In his latest video below he shares the mystery of the birds dropping dead while perched on power lines.
         
      You can watch his videos on his YouTube channel: https://www.youtube.com/user/MrMBB333/videosView the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth. 
      The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality. 
      Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.  
      Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads. 
      Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts. 
      While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.  
      Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.  
      Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.  
      With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials. 
      The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.  
      The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.    
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/  
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      STMD Solicitations and Opportunities
      Technology
      Share
      Details
      Last Updated May 13, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
  • Check out these Videos

×
×
  • Create New...