Members Can Post Anonymously On This Site
NASA Johnson Director to Discuss Exploration Park Facility
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft is seen during its “aluminum bird” systems testing at Lockheed Martin’s Skunk Works facility in Palmdale, California. The test verified how the aircraft’s hardware and software work together, responding to pilot inputs and handling injected system failures. Lockheed Martin / Garry Tice NASA’s X-59 quiet supersonic research aircraft successfully completed a critical series of tests in which the airplane was put through its paces for cruising high above the California desert – all without ever leaving the ground.
“The idea behind these tests is to command the airplane’s subsystems and flight computer to function as if it is flying,” said Yohan Lin, the X-59’s lead avionics engineer at NASA’s Armstrong Flight Research Center in Edwards, California.
The goal of ground-based simulation testing was to make sure the hardware and software that will allow the X-59 to fly safely are properly working together and able to handle any unexpected problems.
Any new aircraft is a combination of systems, and identifying the little adjustments required to optimize performance is an important step in a disciplined approach toward flight.
“We thought we might find a few things during the tests that would prompt us to go back and tweak them to work better, especially with some of the software, and that’s what we wound up experiencing. So, these tests were very helpful,” Lin said.
Completing the tests marks another milestone off the checklist of things to do before the X-59 makes its first flight this year, continuing NASA’s Quesst mission to help enable commercial supersonic air travel over land.
Simulating the Sky
During the testing, engineers from NASA and contractor Lockheed Martin turned on most of the X-59’s systems, leaving the engine off. For example, if the pilot moved the control stick a certain way, the flight computer moved the aircraft’s rudder or other control surfaces, just as it would in flight.
At the same time, the airplane was electronically connected to a ground computer that sends simulated signals – which the X-59 interpreted as real – such as changes in altitude, speed, temperature, or the health of various systems.
Sitting in the cockpit, the pilot “flew” the aircraft to see how the airplane would respond.
“These were simple maneuvers, nothing too crazy,” Lin said. “We would then inject failures into the airplane to see how it would respond. Would the system compensate for the failure? Was the pilot able to recover?”
Unlike in typical astronaut training simulations, where flight crews do not know what scenarios they might encounter, the X-59 pilots mostly knew what the aircraft would experience during every test and even helped plan them to better focus on the aircraft systems’ response.
NASA test pilot James Less sits in the cockpit of the X-59 quiet supersonic research aircraft as he participates in a series of “aluminum bird” systems tests at Lockheed Martin’s Skunk Works facility in Palmdale, California.Lockheed Martin / Garry Tice Aluminum vs. Iron
In aircraft development, this work is known as “iron bird” testing, named for a simple metal frame on which representations of the aircraft’s subsystems are installed, connected, and checked out.
Building such a testbed is a common practice for development programs in which many aircraft will be manufactured. But since the X-59 is a one-of-a-kind airplane, officials decided it was better and less expensive to use the aircraft itself.
As a result, engineers dubbed this series of exercises “aluminum bird” testing, since that’s the metal the X-59 is mostly made of.
So, instead of testing an “iron bird” with copies of an aircraft’s systems on a non-descript frame, the “aluminum bird” used the actual aircraft and its systems, which in turn meant the test results gave everyone higher confidence in the design,
“It’s a perfect example of the old tried and true adage in aviation that says ‘Test what you fly. Fly what you test,’” Lin said.
Still Ahead for the X-59
With aluminum bird testing in the rearview mirror, the next milestone on the X-59’s path to first flight is take the airplane out on the taxiways at the airport adjacent to Lockheed Martin’s Skunk Works facility in Palmdale, California, where the X-59 was built. First flight would follow those taxi tests.
Already in the X-59’s logbook since the fully assembled and painted airplane made its public debut in January 2024:
A Flight Readiness Review in which a board of independent experts from across NASA completed a study of the X-59 project team’s approach to safety for the public and staff during ground and flight testing. A trio of important structural tests and critical inspections that included “shaking” the airplane to make sure there were no unexpected problems from the vibrations. Firing up the GE Aerospace jet engine for the first time after installation into the X-59, including a series of tests of the engine running with full afterburner. Checking the wiring that ties together the X-59’s flight computer, electronic systems, and other hardware to be sure there were no concerns about electromagnetic interference. Testing the aircraft’s ability to maintain a certain speed while flying, essentially a check of the X-59’s version of cruise control. The X-59 Tests in 59
Watch this video about the X-59 aluminum bird testing. It only takes a minute. Well, 59 seconds to be precise. About the Author
Jim Banke
Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
Article 13 hours ago 3 min read NASA Selects Student Teams for Drone Hurricane Response and Cybersecurity Research
Article 16 hours ago 1 min read NASA Glenn Showcases Stirling Engine Technology at Piston Powered Auto-Rama
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated May 15, 2025 EditorJim BankeContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
By NASA
Credit: NASA Following an international signing ceremony Thursday, NASA congratulated Norway on becoming the latest country to join the Artemis Accords, committing to the peaceful, transparent, and responsible exploration of space.
“We’re grateful for the strong and meaningful collaboration we’ve already had with the Norwegian Space Agency,” said acting NASA Administrator Janet Petro. “Now, by signing the Artemis Accords, Norway is not only supporting the future of exploration, but also helping us define it with all our partners for the Moon, Mars, and beyond.”
Norway’s Minster of Trade and Industry Cecilie Myrseth signed the Artemis Accords on behalf of the country during an event at the Norwegian Space Agency (NOSA) in Oslo. Christian Hauglie-Hanssen, director general of NOSA, and Robert Needham, U.S. Embassy Chargé d’Affaires for Norway, participated in the event. Petro contributed remarks in a pre-recorded video message.
“We are pleased to be a part of the Artemis Accords,” said Myrseth. “This is an important step for enabling Norway to contribute to broader international cooperation to ensure the peaceful exploration and use of outer space.”
In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, the first set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Amber Jacobson / Elizabeth Shaw
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated May 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Artemis Accords Office of International and Interagency Relations (OIIR) View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Getty Images NASA has selected two more university student teams to help address real-world aviation challenges, through projects aimed at using drones for hurricane relief and improved protection of air traffic systems from cyber threats.
The research awards were made through NASA’s University Student Research Challenge (USRC), which provides student-led teams with opportunities to contribute their novel ideas to advance NASA’s Aeronautics research priorities.
As part of USRC, students participate in real-world aspects of innovative aeronautics research both in and out of the laboratory.
“USRC continues to be a way for students to push the boundary on exploring the possibilities of tomorrow’s aviation industry.” said Steven Holz, who manages the USRC award process. “For some, this is their first opportunity to engage with NASA. For others, they may be taking their ideas from our Gateways to Blue Skies competition and bringing them closer to reality.”
In the case of one of the new awardees, North Carolina State University in Raleigh applied for their USRC award after refining a concept that made them a finalist in NASA’s 2024 Gateways to Blue Skies competition.
Each team of students selected for a USRC award receives a NASA grant up to $80,000 and is tasked with raising additional funds through student-led crowdfunding. This process helps students develop skills in entrepreneurship and public communication.
The new university teams and research topics are:
North Carolina State University in Raleigh
“Reconnaissance and Emergency Aircraft for Critical Hurricane Relief” will develop and deploy advanced Unmanned Aircraft Systems (UAS) designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
The team includes Tobias Hullette (team lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, and Hadie Sabbah, with faculty mentor Felix Ewere.
Texas A&M University, in College Station
“Context-Aware Cybersecurity for UAS Traffic Management” will develop, test, and pursue the implementation of an aviation-context-aware network authentication system for the holistic management of cybersecurity threats to enable future drone traffic control systems.
The team includes Vishwam Raval (team lead), Nick Truong, Oscar Leon, Kevin Lei, Garett Haynes, Michael Ades, Sarah Lee, and Aidan Spira, with faculty mentor Sandip Roy.
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
9 min read ARMD Research Solicitations (Updated May 1)
Article 2 weeks ago 4 min read Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar
Article 3 weeks ago 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated May 15, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
University Student Research Challenge Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
-
By NASA
The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.
Briefing participants include:
Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space Sarah Walker, director, Dragon mission management, SpaceX Sergio Palumberi, mission manager, ESA (European Space Agency) Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency) Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit) To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:
https://bit.ly/437SAAh
The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.
During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.
The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Alexis DeJarnette
Axiom Space, Houston
alexis@axiomspace.com
Share
Details
Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
Humans in Space Commercial Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This artist’s concept shows the Moon’s hot interior and volcanism about 2 to 3 billion years ago. It is thought that volcanic activity on the lunar near side (the side facing Earth) helped create a landscape dominated by vast plains called mare, which are formed by molten rock that cooled and solidified. NASA/JPL-Caltech Analyzing gravity data collected by spacecraft orbiting other worlds reveals groundbreaking insights about planetary structures without having to land on the surface.
Although the Moon and the asteroid Vesta are very different, two NASA studies use the same technique to reveal new details about the interiors of both.
In the lunar study, published May 14 in the journal Nature, researchers developed a new gravity model of the Moon that includes tiny variations in the celestial body’s gravity during its elliptical orbit around Earth. These fluctuations cause the Moon to flex slightly due to Earth’s tidal force — a process called tidal deformation — which provides critical insights into the Moon’s deep internal structure.
Using their model, the researchers produced the most detailed lunar gravitational map yet, providing future missions an improved way to calculate location and time on the Moon. They accomplished this by analyzing data on the motion of NASA’s GRAIL (Gravity Recovery and Interior Laboratory) mission, whose spacecraft, Ebb and Flow, orbited the Moon from Dec. 31, 2011, to Dec. 17, 2012.
These views of the Moon’s near side, left, and far side were put together from observations made by NASA’s Lunar Reconnaissance Orbiter. NASA/JPL-Caltech In a second study, published in the journal Nature Astronomy on April 23, the researchers focused on Vesta, an object in the main asteroid belt between Mars and Jupiter. Using NASA’s Deep Space Network radiometric data and imaging data from the agency’s Dawn spacecraft, which orbited the asteroid from July 16, 2011, to Sept. 5, 2012, they found that instead of having distinct layers as expected, Vesta’s internal structure may be mostly uniform, with a very small iron core or no core at all.
“Gravity is a unique and fundamental property of a planetary body that can be used to explore its deep interior,” said Park. “Our technique doesn’t need data from the surface; we just need to track the motion of the spacecraft very precisely to get a global view of what’s inside.”
Lunar Asymmetry
The lunar study looked at gravitational changes to the Moon’s near and far sides. While the near side is dominated by vast plains — known as mare — formed by molten rock that cooled and solidified billions of years ago, the far side is more rugged, with few plains.
NASA’s Dawn mission obtained this image of the giant asteroid Vesta on July 24, 2011. The spacecraft spent 14 months orbiting the asteroid, capturing more than 30,000 images and fully mapping its surface. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Both studies were led by Ryan Park, supervisor of the Solar System Dynamics Group at NASA’s Jet Propulsion Laboratory in Southern California, and were years in the making due to their complexity. The team used NASA supercomputers to build a detailed map of how gravity varies across each body. From that, they could better understand what the Moon and Vesta are made of and how planetary bodies across the solar system formed.
Some theories suggest intense volcanism on the near side likely caused these differences. That process would have caused radioactive, heat-generating elements to accumulate deep inside the near side’s mantle, and the new study offers the strongest evidence yet that this is likely the case.
“We found that the Moon’s near side is flexing more than the far side, meaning there’s something fundamentally different about the internal structure of the Moon’s near side compared to its far side,” said Park. “When we first analyzed the data, we were so surprised by the result we didn’t believe it. So we ran the calculations many times to verify the findings. In all, this is a decade of work.”
When comparing their results with other models, Park’s team found a small but greater-than-expected difference in how much the two hemispheres deform. The most likely explanation is that the near side has a warm mantle region, indicating the presence of heat-generating radioactive elements, which is evidence for volcanic activity that shaped the Moon’s near side 2 billion to 3 billion years ago.
Vesta’s Evolution
Park’s team applied a similar approach for their study that focused on Vesta’s rotational properties to learn more about its interior.
“Our technique is sensitive to any changes in the gravitational field of a body in space, whether that gravitational field changes over time, like the tidal flexing of the Moon, or through space, like a wobbling asteroid,” said Park. “Vesta wobbles as it spins, so we could measure its moment of inertia, a characteristic that is highly sensitive to the internal structure of the asteroid.”
Changes in inertia can be seen when an ice skater spins with their arms held outward. As they pull their arms in, bringing more mass toward their center of gravity, their inertia decreases and their spin speeds up. By measuring Vesta’s inertia, scientists can gain a detailed understanding of the distribution of mass inside the asteroid: If its inertia is low, there would be a concentration of mass toward its center; if it’s high, the mass would be more evenly distributed.
Some theories suggest that over a long period, Vesta gradually formed onion-like layers and a dense core. But the new inertia measurement from Park’s team suggests instead that Vesta is far more homogeneous, with its mass distributed evenly throughout and only a small core of dense material, or no core.
Gravity slowly pulls the heaviest elements to a planet’s center over time, which is how Earth ended up with a dense core of liquid iron. While Vesta has long been considered a differentiated asteroid, a more homogenous structure would suggest that it may not have fully formed layers or may have formed from the debris of another planetary body after a massive impact.
In 2016, Park used the same data types as the Vesta study to focus on Dawn’s second target, the dwarf planet Ceres, and results suggested a partially differentiated interior.
Park and his team recently applied a similar technique to Jupiter’s volcanic moon Io, using data acquired by NASA’s Juno and Galileo spacecraft during their flybys of the Jovian satellite as well as from ground-based observations. By measuring how Io’s gravity changes as it orbits Jupiter, which exerts a powerful tidal force, they revealed that the fiery moon is unlikely to possess a global magma ocean.
“Our technique isn’t restricted just to Io, Ceres, Vesta, or the Moon,” said Park. “There are many opportunities in the future to apply our technique for studying the interiors of intriguing planetary bodies throughout the solar system.”
News Media Contacts
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Share
Details
Last Updated May 14, 2025 Related Terms
Vesta Dawn Earth's Moon GRAIL (Gravity Recovery And Interior Laboratory) Jet Propulsion Laboratory Planetary Science Small Bodies of the Solar System The Solar System Explore More
7 min read Webb’s Titan Forecast: Partly Cloudy With Occasional Methane Showers
Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to…
Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
Article 2 days ago 5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
NASA’s James Webb Space Telescope has captured new details of the auroras on our solar…
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.