Jump to content

Can Volcanic Super Eruptions Lead to Major Cooling? Study Suggests No


Recommended Posts

  • Publishers
Posted

Some 74,000 years ago, the Toba volcano in Indonesia exploded with a force 1,000 times more powerful than the 1980 eruption of Mount St. Helens. The mystery is what happened after that – namely, to what degree that extreme explosion might have cooled global temperatures.

Etna Eruption
Crew aboard the International Space Station photographed the eruption of Mount Etna in Sicily in October 2002. Ashfall was reported more than 350 miles away. When it comes to explosive power, however, no eruption in modern times can compare with a super eruption – which hasn’t occurred for tens of thousands of years.
NASA

When it comes to the most powerful volcanoes, researchers have long speculated how post-eruption global cooling – sometimes called volcanic winter – could potentially pose a threat to humanity. Previous studies agreed that some planet-wide cooling would occur but diverged on how much. Estimates have ranged from 3.6 to 14 degrees Fahrenheit (2 to 8 degrees Celsius).

In a new study in the Journal of Climate, a team from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University in New York used advanced computer modeling to simulate super-eruptions like the Toba event. They found that post-eruption cooling would probably not exceed 2.7 degrees Fahrenheit (1.5 degrees Celsius) for even the most powerful blasts.

“The relatively modest temperature changes we found most compatible with the evidence could explain why no single super-eruption has produced firm evidence of global-scale catastrophe for humans or ecosystems,” said lead author Zachary McGraw, a researcher at NASA GISS and Columbia University.

To qualify as a super eruption, a volcano must release more than 240 cubic miles (1,000 cubic kilometers) of magma. These eruptions are extremely powerful – and rare. The most recent super-eruption occurred more than 22,000 years ago in New Zealand. The best-known example may be the eruption that blasted Yellowstone Crater in Wyoming about 2 million years ago.

Small Particles, Big Questions

McGraw and colleagues set out to understand what was driving the divergence in model temperature estimates because “models are the main tool for understanding climate shifts that happened too long ago to leave clear records of their severity.” They settled on a variable that can be difficult to pin down: the size of microscopic sulfur particles injected miles high into the atmosphere.

In the stratosphere (about 6 to 30 miles in altitude), sulfur dioxide gas from volcanoes undergoes chemical reactions to condense into liquid sulfate particles. These particles can influence surface temperature on Earth in two counteracting ways: by reflecting incoming sunlight (causing cooling) or by trapping outgoing heat energy (a kind of greenhouse warming effect).

Over the years, this cooling phenomenon has also spurred questions about how humans might turn back global warming – a concept called geoengineering – by intentionally injecting aerosol particles into the stratosphere to promote a cooling effect.

The researchers showed to what extent the diameter of the volcanic aerosol particles influenced post-eruption temperatures. The smaller and denser the particles, the greater their ability to block sunlight. But estimating the size of particles is challenging because previous super eruptions have not left reliable physical evidence. In the atmosphere, the size of the particles changes as they coagulate and condense. Even when particles fall back to Earth and are preserved in ice cores, they don’t leave a clear-cut physical record because of mixing and compaction.

By simulating super-eruptions over a range of particle sizes, the researchers found that super-eruptions may be incapable of altering global temperatures dramatically more than the largest eruptions of modern times. For instance, the 1991 eruption of Mount Pinatubo in the Philippines caused about a half-degree drop in global temperatures for two years.

Luis Millán, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Southern California who was not involved in the study, said that the mysteries of super-eruption cooling invite more research. He said the way forward is to conduct a comprehensive comparison of models, as well as more laboratory and model studies on the factors determining volcanic aerosol particle sizes.

Given the ongoing uncertainties, Millán added, “To me, this is another example of why geoengineering via stratospheric aerosol injection is a long, long way from being a viable option.”

The study, titled “Severe Global Cooling After Volcanic Super-Eruptions? The Answer Hinges on Unknown Aerosol Size,” was published in the Journal of Climate.

By Sally Younger
Earth Science News Team
NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
sally.m.younger@jpl.nasa.gov

Share

Details

Last Updated
Mar 01, 2024
Location
Jet Propulsion Laboratory

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Astronomers using the European Space Agency’s Cheops mission have caught an exoplanet that seems to be triggering flares of radiation from the star it orbits. These tremendous explosions are blasting away the planet’s wispy atmosphere, causing it to shrink every year.
      This is the first-ever evidence for a ‘planet with a death wish’. Though it was theorised to be possible since the nineties, the flares seen in this research are around 100 times more energetic than expected.
      View the full article
    • By European Space Agency
      Iceland is one of the most active volcanic regions in the world, but its seismic nature is part of a much broader geological history.
      In a groundbreaking discovery, scientists, supported by an ESA-funded project, have uncovered the underlying forces that forged the North Atlantic’s fiery volcanic past – shedding light on the vast geological region that spans from Greenland to western Europe, which is home to iconic natural wonders like the Giant’s Causeway in Northern Ireland. 
      View the full article
    • By NASA
      The core portion of NASA’s Nancy Grace Roman Space Telescope has successfully completed vibration testing, ensuring it will withstand the extreme shaking experienced during launch. Passing this key milestone brings Roman one step closer to helping answer essential questions about the role of dark energy and other cosmic mysteries.
      “The test could be considered as powerful as a pretty severe earthquake, but there are key differences,” said Cory Powell, the Roman lead structural analyst at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Unlike an earthquake, we sweep through our frequencies one at a time, starting with very low-level amplitudes and gradually increasing them while we check everything along the way. It’s a very complicated process that takes extraordinary effort to do safely and efficiently.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows the core components of NASA’s Nancy Grace Roman Space Telescope undergoing a vibration test at the agency’s Goddard Space Flight Center. The test ensures this segment of the observatory will withstand the extreme shaking associated with launch. Credit: NASA’s Goddard Space Flight Center The team simulated launch conditions as closely as possible. “We performed the test in a flight-powered configuration and filled the propulsion tanks with approximately 295 gallons of deionized water to simulate the propellent loading on the spacecraft during launch,” said Joel Proebstle, who led this test, at NASA Goddard. This is part of a series of tests that ratchet up to 125 percent of the forces the observatory will experience.
      This milestone is the latest in a period of intensive testing for the nearly complete Roman Space Telescope, with many major parts coming together and running through assessments in rapid succession. Roman currently consists of two major assemblies: the inner, core portion (telescope, instrument carrier, two instruments, and spacecraft) and the outer portion (outer barrel assembly, solar array sun shield, and deployable aperture cover).
      Now, having completed vibration testing, the core portion will return to the large clean room at Goddard for post-test inspections. They’ll confirm that everything remains properly aligned and the high-gain antenna can deploy. The next major assessment for the core portion will involve additional tests of the electronics, followed by a thermal vacuum test to ensure the system will operate as planned in the harsh space environment.
      This video highlights some of the important hardware milestones as NASA’s Nancy Grace Roman Space Telescope moves closer to completion. The observatory is almost fully assembled, currently built up into two large pieces: the inner portion (telescope, instrument carrier, two instruments, and spacecraft) and outer portion (outer barrel assembly, solar array sun shield, and deployable aperture cover). This video shows the testing these segments have undergone between February and May 2025. Credit: NASA’s Goddard Space Flight Center In the meantime, Goddard technicians are also working on Roman’s outer portion. They installed the test solar array sun shield, and this segment then underwent its own thermal vacuum test, verifying it will control temperatures properly in the vacuum of space. Now, technicians are installing the flight solar panels to this outer part of the observatory.
       
      The team is on track to connect Roman’s two major assemblies in November, resulting in a whole observatory by the end of the year that will then undergo final tests. Roman remains on schedule for launch by May 2027, with the team aiming for as early as fall 2026.
      Click here to virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
       
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 04, 2025 Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology The Universe Explore More
      3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
      Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 10 months ago 6 min read New Study Reveals NASA’s Roman Could Find 400 Earth-Mass Rogue Planets
      Article 2 years ago View the full article
    • By USH
      A mysterious object within our own galaxy is emitting a bizarre pulsing signal directed at Earth, one that scientists say is unlike anything ever recorded, and they haven’t ruled out an alien origin. 
      NASA astrophysicist Dr. Richard Stanton, who led the research team, described the signal as “strange” and said its properties defy all known astrophysical explanations. “In more than 1,500 hours of observations, we’ve never seen a pulse like this,” 

      Stanton noted. The signal originates from a sun-like star approximately 100 light-years away in the constellation Ursa Major (the Great Bear). It was first detected as a flash of light that abruptly brightened, dimmed, and then brightened again, an unusual pattern that immediately drew attention.
      Even more puzzling, the pulse repeated exactly four seconds later, matching the first in every detail.
      According to Stanton’s findings, published in Acta Astronautica, the signal also triggered bizarre activity in the host star, causing it to partially vanish in just a tenth of a second, a phenomenon with no clear scientific explanation. 
      It's noteworthy that this object was specifically targeting Earth with its signal, not just broadcasting randomly into space, but directing its transmission toward our planet. 
      Whatever the intention behind it, that alone is intriguing. Even more interesting is that NASA publicly acknowledged this discovery. While NASA’s statements aren't always fully transparent, could this be a prelude to something bigger, perhaps a forthcoming revelation about the discovery of a Dyson Sphere, or even confirmation of intelligent extraterrestrial life?
        View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman Aaswath Pattabhi Raman
      University of California, Los Angeles
      Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...