Jump to content

Recommended Posts

  • Publishers
Posted
Astrogram banner
Astrogram banner

Into the Belly of the Rover: VIPER’s Final Science Instrument Installed

by Rachel Hoover

TRIDENT, designed and developed by engineers at Honeybee Robotics in Altadena, California, is the fourth and final science instrument to be installed into VIPER. NASA engineers have already successfully integrated VIPER’s three other science instruments into the rover. These include: the MSOLO (Mass Spectrometer Observing Lunar Operations), NIRVSS (Near-Infrared Volatiles Spectrometer System), and NSS (Neutron Spectrometer System). 

A team of engineers prepares to integrate TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – into the belly of NASA’s first robotic Moon rover, VIPER (Volatiles Investigating Polar Exploration Rover). 

jsc2024e006254.webp?w=2000
A team of engineers prepares to integrate TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – into the belly of NASA’s first robotic Moon rover, VIPER – short for the Volatiles Investigating Polar Exploration Rover.
Credit: NASA/Bill Stafford

Shortly after TRIDENT was integrated in the clean room at NASA’s Johnson Space Center in Houston, the team also successfully tested its ability to power on, release the locks that hold the drill in place during launch, extend to its full depth of more than three feet (one meter), perform percussive drilling, and return to its stowed position inside the rover.

TRIDENT will dig up soil from below the lunar surface using a rotary percussive drill – meaning it both spins to cut into the ground and hammers to fragment hard material for more energy-efficient drilling. In addition to being able to measure the strength and compactedness of the lunar soil, the drill also carries a temperature sensor to take readings below the surface. VIPER will launch to the Moon aboard Astrobotic’s Griffin lunar lander on a SpaceX Falcon Heavy rocket as part of NASA’s Commercial Lunar Payload Services initiative. It will reach its destination at Mons Mouton near the Moon’s South Pole. Scientists will work with these four instruments to better understand the origin of water and other resources on the Moon, which could support human exploration as part of NASA’s Artemis campaign.

NASA Unveils the X-59 Supersonic Aircraft

On January 12, in Palmdale, California, the NASA unveiled the X-59, a quiet supersonic aircraft, to the world. The aircraft is the centerpiece of NASA’s Quesst mission, the agency, and Lockheed Martin. Quesst is NASA’s mission to demonstrate how the X-49 can fly supersonic without generating loud sonic booms and then survey what people hear when it flies overhead. Reaction to the quieter sonic “thumps” will be shared with regulators who will then consider writing new sound-based rules to lift the ban on the faster-than-sound flight over land. .

quesst-X59-plane
NASA Quesst’s Mission’s X-59 Supersonic Aircraft.

Members of the Quesst mission team are located at all four NASA field centers, all of which have traditionally been associated with the agency’s historic aeronautical research. The team at Ames has spent many hours working on computational fluid dynamics simulations, wind tunnel testing, systems engineer, and test component manufacturing, helping to shape not just the ingenuity of the aircraft, but the Quesst mission entirely. To learn more about the X-59’s impact on the future of aviation and the tradition of rollout ceremonies at NASA, click here

Nahum Alem Receives Modern Day Technology Leader Award

Nahum Alem received a 2024 Modern-Day Technology Leader Award at the 2024 BEYA STEM DTX Conference in Baltimore, Maryland. This is one of the industry’s most important honors in science, technology, enginering, and math (STEM). Alem was recognized at the Technology Recognition Luncheon featuring Modern-Day Technology Leaders and Science Spectrum Trailblazers on Feb. 16. This year’s theme was, “People, Process, Technology.”

image-50445569.jpg?w=2048
Nahum Alem with the Black Engineer of the Year Modern Day Technology Leaders Award during the BEYA STEM DTX Conference in Baltimore, Maryland on Feb. 16.

The BEYA STEM DTX Conference recognition program is more critical than ever before. One landmark study projects the number of jobs in science, technology, engineering, and math (STEM) in the United States is set to increase in the coming years. According to the National Science Foundation, underrepresented minorities—Hispanic, Black, and American Indian or Alaska Native individuals—made up a higher share of the skilled technical workforce (32%) in 2021 than of workers who were employed in STEM occupations with at least a bachelor’s degree (16%). The conference highlights the importance of not only celebrating the achievements of STEM leaders and professionals but shifting the narrative towards an action-driven strategy to increase the number of minorities with STEM educations and careers. 

Nahum Alem
Nahum Alem award announcement on the digital sign in front of NASA Ames as one drives into the gate.

According to Tyrone D. Taborn, chairman of the BEYA STEM DTX Conference, “Nahum was selected because he is among an extraordinary group of forward-thinking STEM experts. This year the candidates were the strongest and represented the most diverse collection of executive professionals we have had the pleasure of evaluating. From machine learning to medical breakthroughs, this year’s BEYA STEM awardees stand out as superior authorities in their respective fields.”

For nearly four decades, awards presented at the BEYA STEM Conference have honored excellence in STEM and underscored the serious under-representation of minorities in STEM and at senior levels in all disciplines. For 38 years, employers committed to inclusion have chosen the BEYA STEM Conference to exchange best practices and strategies on how to attract and keep diverse talent in scientific and technical fields. 

The 2024 BEYA STEM DTX Conference hosted multiple award presentation events throughout the conference, where Nahum was recognized in addition to all 2024 award recipients for their significant accomplishments in STEM.

Over the three-day event, the conference provided forums on the retention of diverse talent in STEM, continuous improvement, and networking.

The BEYA STEM Awards is a prestigious recognition platform that celebrates the accomplishments of engineers in the STEM fields. For nearly four decades, BEYA has empowered, mentored, and inspired countless individuals, solidifying its position as a beacon of excellence and innovation. https://www.beya.org

Cast of Broadway’s ‘The Wiz’ “Ease on Down the Road” Visits NASA Ames

Members of the cast and crew of “The Wiz” pose inside the National Full-Scale Aerodynamic Complex 40 by 80 foot wind tunnel at NASA’s Ames Research Center in Silicon Valley.
Members of the cast and crew of “The Wiz” pose inside the National Full-Scale Aerodynamic Complex 40 by 80 foot wind tunnel at NASA’s Ames Research Center in Silicon Valley.
Credit: NASA Ames/Brandon Torres

Members of the cast and crew of Broadway production “The Wiz,” currently on tour at San Francisco’s Golden Gate Theatre, visited NASA Ames on Jan. 29 to learn more about the center’s work in air and space.

The group met with center leadership and members of Ames employee advisory groups and toured the Vertical Motion Simulator (VMS), the National Full-Scale Aerodynamics Complex (NFAC), and observed progress on the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) robots, which use pre-fabricated modular blocks to build structures autonomously, before following the yellow brick road back “home” to Oz. 

NASA Leader Casey Swails Learns About Wildfire Work at NASA Ames

by Abby Tabor

NASA Deputy Associate Administrator Casey Swails views a demonstration on screen in the Airspace Operations Laboratory at NASA Ames. Researchers presented the diverse, long-running efforts in aeronautics at Ames that have helped lay the foundation for agency work related to wildfire response.

NASA Deputy Associate Administrator Casey Swails
NASA Deputy Associate Administrator Casey Swails

These include a project to help integrate drones into the airspace with Unmanned Aircraft Systems Traffic Management, their application to disaster response with the Scalable Traffic Management for Emergency Response Operations project, and how those informed NASA’s newest effort to make wildfire response more targeted and adaptable, the Advanced Capabilities for Emergency Response Operations project.

Michael Falkowski, program manager for the Applied Sciences Wildland Fire program at NASA Headquarters presented wildfire efforts happening under NASA’s Science Mission Directorate, such as the FireSense project, led out of Ames.

The importance of collaborations within NASA and with partner agencies was also highlighted. Wildfires are complex phenomena and tackling their challenges will require the work of many, for the benefit of all.

NASA Astronomer Sees Power in Community, Works to Build More

by Abby Tabor

Science is often portrayed as a solitary affair, where discoveries are made by lone geniuses toiling in isolation. But Dr. Natasha Batalha, an astronomer at NASA Ames says solving problems with the people around her is one of the best parts of her job.

Dr. Natasha Batalha, an astronomer at NASA’s Ames Research Center in California’s Silicon Valley, says collaborating with her teams is one of the best parts of her job.
Dr. Natasha Batalha, an astronomer at NASA Ames says collaborating with her teams is one of the best parts of her job.

 “Oh, man, working with people is all I do!” said Batalha, whose current research involves using NASA’s James Webb Space Telescope to study exoplanets, planets outside our solar system that orbit other stars.

Batalha’s work explores hot, Jupiter-like exoplanets; smaller, rocky exoplanets more similar to Earth; and brown dwarfs, mysterious objects smaller than a star but huge compared to the biggest planets. A single question has driven her since she was a kid: “Does life exist beyond Earth?”

It’s a lofty question, bigger than any one scientist. And that’s the point.

“I love being part of a larger community,” she said, “We’re working together to try to solve this question that people have been asking for centuries.”

However, the particular joy of belonging wasn’t always present in Batalha’s life.

When she was 10, her family moved from Brazil to the U.S., where she was met with culture shock, pressure to assimilate, and a language barrier. She thinks the latter is partly why she gravitated toward the universal language of math.

Eventually, her interests and strengths took shape around astronomy. When she chose to study physics in college, followed by a dual PhD in astronomy and astrobiology, her parents – who are also scientists – helped fill in for the community she was otherwise lacking.

“In high school, I watched female students drop out of my physics classes,” Batalha said. “The honors physics track in college was devoid of women and people of color. I didn’t feel I had a community in my college classes.”

Her mother, Natalie Batalha, is an astronomer who served as project scientist for NASA’s Kepler space telescope– the mission that taught us there are more planets than stars. Natasha’s father is a LatinX physicist. Both her parents had already faced similar challenges in their careers, and having their example to look at of people who had successfully overcome those barriers helped her push on.  

“I identify as female and LatinX, which are both underrepresented groups in STEM,” she said, “but I also have a ton of privilege because my parents are in the field. That gave me a dual perspective on how powerful community is.”

Dr. Natasha Batalha has been hooked on the search for life beyond Earth since elementary school. UC Santa Cruz, UC Regents
Dr. Natasha Batalha has been hooked on the search for life beyond Earth since elementary school. UC Santa Cruz, UC Regents

Since then, empowering her own science community has been a focus of Batalha’s work.

She builds open-source tools, like computer programs for interpreting data, that are available to all. They help scientists use Webb’s exoplanet data to study what climates they may have, the behavior of clouds in their atmospheres, and the chemistry at work there.

“I saw how limiting closed toolsets could be for the community, when only an ‘inner circle’ had access to them,” Batalha said. “So, I wanted to create new tools that would put everyone on the same footing.”

Batalha herself recently used Webb to explore the skies of exoplanet WASP-39 b, a hot gas giant orbiting a star 700 light-years away. She is part of the team that found carbon dioxide and sulfur dioxide there, marking the first time either was detected in an exoplanet atmosphere. Now, she is turning to the difficult-to-discern characteristics of smaller, cooler planets.

Batalha says she’s exactly where her 6th-grade self imagined she would be. In elementary school, she read a biography of NASA astronaut Sally Ride and was hooked by an idea it contained: that in 20 years the kids reading those words could be the ones pioneering the search for life on Mars.

Today’s youth belong to the Artemis Generation, who will explore farther than people have ever gone before. The Artemis program will send the first woman and first person of color to the lunar surface. Missions over time will build a presence at the Moon to unlock a new era of science and prepare for human missions to Mars and beyond. Along the way, scientists will continue to search for signs of life beyond Earth, an endeavor building on the work of many generations and relying on those in the future to carry on the search. 

“That’s something really rewarding about my work at NASA,” she said. “These questions have been asked throughout human history and, by joining the effort to answer them, you’re taking the baton for a while, before passing it on to someone else.”

Ames Employees Gather for Day of Remembrance Ceremony

by Abby Tabor

On Thursday, Jan. 25, Ames employees gathered for the center’s in-person Day of Remembrance Ceremony in front of N200. Also in attendance were former Center Director Scott Hubbard, and former Deputy Center Director Bill Berry. Every year, we take this important opportunity to honor the memories of those who bravely gave their lives in the pursuit of exploration and discovery and to celebrate their contribution to NASA’s missions. This is a solemn moment to reflect and learn from our history and consider our strong culture of safety as we pursue bold advances in our work here at Ames. 

acd24-0011-006.jpg?w=2048
NASA Ames employees gather at the flagpole in front of N200 to honor the lives lost in human spaceflight and the 17 fallen crew members from Apollo I, the space shuttles Challenger and Columbia.
Credit: NASA Ames/Don Richey

We honor those lost in test flights, missions, and research throughout our history: the Apollo 1 crew – Virgil “Gus” Grissom, Edward White, and Roger Chaffee – who lost their lives at the start of NASA’s pursuit of landing humans on the moon, on January 27, 1967.  We remember the determination of the Challenger crew, who tragically perished 73 seconds into their flight on January 28, 1986 – Michael J. Smith, Dick Scobee, Ronald McNair, Elison Onizuka, Gregory Jarvis, Judith Resnick, and Christa McAuliffe, the first “teacher in space” who leaves a legacy of STEM education that continues today.  We remember the bravery and inspiration of the crew of Columbia – Rick Husband, William McCool, Michael Anderson, Ilan Ramon, David Brown, Laurel Clark, and Ames’ own Kalpana Chawla, friend and coworker of many here, who we lost during a failed shuttle reentry on February 1, 2003.  We also honor the others who gave their lives pursuing the missions of N-A-C-A and NASA research in aerospace and space exploration, whose commitment and courage leave a lasting legacy across our agency and nation. 

During the ceremony, Scott Hubbard, who served on the Columbia Accident Investigation Board (CAIB), spoke about how the accident changed him and what he learned. When sharing a key takeaway from the CAIB report, Hubbard said, “NASA must be a learning agency, and we can’t shy away from our failures or tragedies. We can’t assign them to history so we must learn from them so that [accidents] never occur.” 

As we work to return humans to the moon, and onto Mars, we must reflect on the importance and value of the work we do here at Ames to help ensure the health and safety of those who risk their lives for exploration and the pursuit of knowledge. One example, after the successful return of the Orion capsule from the Artemis 1 test flight a little over a year ago, we discovered that we needed to learn more about the heat shield and its performance during Earth entry from the Moon. Our aero-thermal-dynamics, thermal protection systems, and other experts, along with our arc jet testing team have worked tirelessly to prepare for the first crewed flight of Artemis 2 coming up in 2025.   

Many in our current workforce were not working at the agency when we experienced these unfortunate losses. But we continue to carry the memory of our fallen colleagues and the lessons we’ve learned through our work today. When we look back on the tragedies of the past, we have an opportunity to apply lessons we’ve learned and continue to enforce a safety culture that encourages every voice to be heard and keeps everyone safe. 

Safety is one of NASA’s core values and there’s a reason why it’s listed as NASA’s first core value. We are committed to sustaining a culture that encourages speaking out and sharing concerns. On or off duty, we have a responsibility to keep safety at the center of our work and daily lives – owning and learning from our mistakes and being open to speaking up about concerns with others – to protect our employees, our community, and ourselves. 

Thank you to all those who were able to join us in this moment of reflection. Please take time to look back on NASA’s history, remember our fallen, and consider your health and safety. We cannot do the work that we do without you and your well-being is important us. Know that we have resources available to support you through things that happen at work and beyond. Our community is strong, and let’s continue to care for one another. 

Thank you to those who helped to put our ceremony together, including Lynda Haines, our communications team, and our protective services professionals who keep us safe and secure each and every day. 

Japan Aerospace Exploration Agency (JAXA) Leader Visits Ames to Discuss Space Science and Spaceflight

by Abby Tabor

acd24-0016-009-c3b2e7.jpg?w=2048
Left to right: Institute of Space and Astronautical Science (ISAS) Management and Integration Department Mr. Nobuhiro Takahashi, Center Director Dr. Eugene Tu, and Vice President and Director General (ISAS) Dr. Hitoshi Kuninaka in the N200 Committee Room following an overview of the history and accomplishments of Ames Research Center.
Credit: NASA Ames/Don Richey

Daniel Andrews, project manager for NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) (left), stands next to a full-scale model of the rover alongside visitors from the Japan Aerospace Exploration Agency (JAXA): Dr. Hitoshi Kuninaka, Vice President of JAXA and Director General of JAXA’s Institute of Space and Astronautical Science (ISAS); Nobuhiro Takahashi of the ISAS Management and Integration Department; and Shintaro Chofuku, a JAXA engineer on detail to NASA’s Ames Research Center in California’s Silicon Valley (right), during a visit to Ames on Feb. 1, 2024. 

acd24-0016-016-b6494b.jpg?w=2048
Left to Right: Project Manager of the Volatiles Investigating Polar Exploration Rover (VIPER) Dan Andrews, Vice President and Director General, Institute of Space and Astronautical Science (ISAS) and Japan Aerospace Exploration Agency (JAXA) Dr. Hitoshi Kuninaka, ISAS Management and Integration Department Nobuhiro Takahashi, and Shintaro Chofuku with the VIPER model in the lobby of N232.
Credit: NASA Ames/Don Richey

Following briefings about both agencies’ space science and spaceflight missions, Kuninaka toured several Ames facilities supporting NASA and JAXA’s exploration of the solar system. The heat shield for JAXA’s Hayabusa2 mission, which delivered a sample of an asteroid to Earth in 2020, was tested in the center’s arc jet facility, and a portion of that sample is now being studied by Ames researchers. An upcoming JAXA mission to study the two moons of Mars, called Martian Moons eXploration (MMX), was also tested in the arc jet.

Present and future exploration of the Moon was a focus of the day, including a stop at Ames’ Lunar Imaging Lab following the VIPER briefing.  

acd24-0016-020.jpg?w=2048
Representatives from the Japan Aerospace Exploration Agency (JAXA) visited Ames on Feb. 1. Here they are seen with the Black Swift S2 UAS in the lobby of N232. Left to right: Vice President and Director General Institute of Space and Astronautical Science (ISAS) and JAXA Dr. Hitoshi Kuninaka; Associate Director for Science and Strategy of the Science Directorate at NASA Ames Ryan Spackman; and ISAS Management and Integration Department Nobuhiro Takahashi.
Credit: NASA Ames/Don Richey

VIPER will be delivered to Mons Mouton near the Moon’s South Pole in late 2024 to map water and other potential resources and explore the characteristics of the lunar environment where NASA plans to send future astronauts as part of the Artemis campaign.

Last month, JAXA’s Smart Lander for Investigating Moon (SLIM) arrived on the lunar surface, after reaching its targeted landing site with great accuracy. The mission aimed to demonstrate accurate lunar landing techniques by a small explorer, to help accelerate study of the Moon and planets using lighter exploration systems.

Japan is a significant partner for NASA and for Ames, specifically,” said Center Director Eugene Tu. “From testing with our teams the X-59 quiet supersonic aircraft design to JAXA’s contributions to Artemis and Gateway, where astronauts on future lunar missions will stay, our work together runs broad and deep. We look forward to many more fruitful collaborations.”

Faces of NASA

Rodney Martin – Deputy Discovery & Systems Health Technical Area Lead at Ames

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

rodneymartin-acd23-0133-010
Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center
Credit: NASA Ames/Brandon Torres

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers

by Arezu Sarvestani

Engineering is a huge field with endless applications. From aerospace to ergonomics, engineers play an important role in designing, building, and testing technologies all around us.

We asked three engineers at NASA’s Ames Research Center in California’s Silicon Valley to share their experiences, from early challenges they faced in their careers to the day-to-day of being a working engineer.

Give us a look behind the curtain – what is it like being an engineer at NASA?

acosta-daughter-vms-igted.webp?w=1536
In her early days at NASA, Diana Acosta visited her aeronautics research and development team during her maternity leave and her daughter got her first introduction to flight simulation technology.

Diana Acosta: I remember working on my first simulations. We were developing new aircraft with higher efficiency that could operate in new places, such as shorter runways. My team was putting together control techniques and introducing new algorithms to help pilots fly these new aircraft in a safer way. We were creating models and testing, then changing things and testing again. 

We had a simulator that worked on my laptop, and we had a lab with a pilot seat and controls. Every week, I made it my goal to finish my modeling or controls work and put that into the lab environment so that I could fly the aircraft. Every Friday afternoon, I would fly the aircraft in simulation and try out the changes I’d made to see if we were going in a good direction. We’d later integrate that into the Vertical Motion Simulator at Ames (which was used to train all the original space shuttle pilots) so that we could do a full motion test with a collection of pilots to get feedback. 

When simulation time came around, it was during my maternity leave and my team had to take the project to simulation without me. It’s hard to get out of the house with a newborn, but sometimes I’d come by with my daughter and bring brownies to the team. I have two daughters now, and they’ve both been in simulators since a young age.

Diana Acosta is Chief of the Aerospace Simulation and Development Branch at NASA’s Ames Research Center. She has worked at NASA for 17 years.

What’s a challenge you’ve overcome to become an engineer?

acd12-0073-004.webp?w=2000
Savvy Verma (standing) reviews simulation activity with Gus Guerra in the Terminal Tactical Separation Assured Flight Environment at NASA’s Ames Research Center in California’s Silicon Valley.
Credit: NASA Ames/Dominic Hart

Savvy Verma: One of the biggest challenges when I started working was that I was sometimes the only woman in a group of men, and I was also much younger. It was sometimes a challenge to get my voice through, or to be heard. I had mentors who taught me to speak up and say things the way I saw them, and that’s what helped me. A good mentor will back you up and support you when you’re in big meetings or giving presentations. They’ll stand up and corroborate you when you’re right, and that goes a long way toward establishing your credibility. It also helped build my confidence, it made me feel like I was on the right track and not out of line. I had both male and female mentors. The female mentor I had always encouraged me to speak my mind. She said the integrity of the experimental result is more important than trying to change things because someone doesn’t like it or doesn’t want to express it a certain way. 

I have a lot more women coworkers now, things have changed a lot. In my group there are four women and three men. 

Savvy Verma is an aerospace engineer at NASA’s Ames Research Center. She has worked at NASA for 22 years.

Can you become an engineer if you struggle with math in school?

Dorcas Kaweesa
Dorcas Kaweesa

Dorcas Kaweesa: When I introduce myself as an engineer, people always say, “You must be good at math,” and I say, “Oh, I work at it.”

When you want to become an engineer, you must remain adaptable, hardworking, and always willing to learn something new. We’re constantly learning, critically thinking, and problem solving. Most of the time we apply mathematical concepts to the engineering problems we’re solving and not every problem is the same. If you struggle with math, my advice is to maintain the passion for learning, especially learning from your mistakes. It comes down to practicing and challenging yourself to think beyond the immediate struggle. There are so many types of math problems and if you’re not good at one, maybe you’re good at another. Maybe it’s just a hiccup. Also, seek help when you need it, there are instructors and peers out there willing to support you.

Personally, I sought help from my instructors, peers, and mentors, in the math and engineering classes that I found challenging. I also practiced a great deal to improve my problem solving and critical thinking skills. In my current role, I am constantly learning new things based on the task at hand. Learning never ends! If you’re struggling with a math concept, don’t give up. Keep trying, keep accepting the challenge, and keep practicing, you’ll steadily make progress. 

Dorcas Kaweesa is mechanical engineer and structures analyst at NASA’s Ames Research Center. She has worked at NASA for more than two years.

SMA Spotlight: Mission Support Creates Career Satisfaction for Zarchi

Each month, the NASA Safety Center profiles a member of the Safety and Mission Assurance (SMA) community, providing insight into their background and highlighting the ways they contribute to the NASA mission. The SMA workforce is made up of a diverse group of professionals who operate across a range of disciplines to assure the safety of NASA personnel and enhance the success of the agency’s portfolio of programs and projects. In January, Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition.

Zarchi has worked in her SMA role for nearly three years but has been a member of the NASA family for 18 years. Prior to her SMA duties, Zarchi was a computational analyst and supervisor working on heat shields in Ames’ Entry Systems and Technology division.

Zarchi’s supervisory and engineering background has served her well in her SMA role at Ames, which she describes as a “jack-of-all-trades” facility.

Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition in January.
Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition in January.

“I am never bored! Because Ames is small, we kind of do it all,” she said. “We have a lot of ‘do-no-harm’ missions, as well as high-risk missions, and we have a lot of critical facilities here.”

Zarchi’s group supports a varied roster of Ames projects, including Volatiles Investigating Polar Exploration Rover (VIPER), Arc Jet Modernization, HelioSwarm, the creation of a procurement Quality Assurance capability, and facilities like wind tunnels and the Vertical Motion Simulator.

In addition to her supervisory duties, Zarchi is enjoying the long-term work of building new leadership roles within her division to give her staff more opportunities.

 “I want to see them go in the different directions they choose,” she said. “Enabling them in their careers is my proudest achievement.”

Throughout her career in multiple roles and levels of responsibility, Zarchi said the best learning experiences she’s had are failures.

“Any time there’s some kind of adversity or challenge, it requires reflection and homework,” she said.

She advises early career employees to embrace those hard situations and not be afraid to ask questions to expand their skills and knowledge.

“The best way to get understanding is by asking questions and speaking up,” she said. “A vital ability that we all need to have, regardless of our role, is the ability to communicate.”

Zarchi believes the SMA community will continue to see funding challenges as well as requirements tailoring support.

“Reliance on funding from projects is a challenge,” she said. “A lot of thought needs to go into making sure we are maintaining our independence, even though we are charging to projects. There’s also a lot of work to be done codifying the tailoring of SMA support to high-risk projects.”

Throughout these challenges, Zarchi encourages her SMA colleagues to understand just how important their roles are to the NASA community.

“I want SMA to know that they’re crucial to NASA’s mission, even if they don’t hear it often or get that feeling,” she said. “It’s vital that this community stays healthy and supportive of each other. I love how everyone I encounter in SMA is so supportive. I admire that and want to embody that as well.”

Zarchi said that the opportunity to have a direct impact on NASA missions is what made her SMA role most appealing.

“What we do is really important, and I appreciate the gravity of the role,” she said. “We touch nearly everything. I want to help spread the word on the importance of SMA and why people should care about it.”

Robot Team Builds High-Performance Digital Structure for NASA

by Gianine Figliozzi

Greater than the sum of its parts: NASA tests the capability of a system that includes simple robots, structural building blocks, and smart algorithms to build functional, high-performance large-scale structures, ultimately enabling autonomous deep-space infrastructure.

acd22-0057-093.webp?w=2000
Research engineer Christine Gregg inspects a Mobile Metamaterial Internal Co-Integrator (MMIC-I) builder robot. These simple robots are part of a hardware and software system NASA researchers are developing to autonomously build and maintain high-performance large space structures comprised of building blocks. MMIC-I works by climbing though the interior space of building blocks and bolting them to the rest of the structure during a build or unbolting during disassembly.
Credit: NASA Ames/Dominic Hart

If they build it, we will go – for the long-term.

Future long-duration and deep-space exploration missions to the Moon, Mars, and beyond will require a way to build large-scale infrastructure, such as solar power stations, communications towers, and habitats for crew. To sustain a long-term presence in deep space, NASA needs the capability to construct and maintain these systems in place, rather than sending large pre-assembled hardware from Earth. 

NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) team is developing a hardware and software system to meet that need. The system uses different types of inchworm-like robots that can assemble, repair, and reconfigure structural materials for a variety of large-scale hardware systems in space. The robots can do their jobs in orbit, on the lunar surface, or on other planets – even before humans arrive.

Researchers at NASA’s Ames Research Center in California’s Silicon Valley recently performed a laboratory demonstration of the ARMADAS technology and analyzed the system’s performance. During the tests, three robots worked autonomously as a team to build a meters-scale shelter structure – roughly the size of a shed – using hundreds of building blocks.  The team published their results today in Science Robotics.

Research engineer Taiwo Olatunde, left, and intern Megan Ochalek, right, observe as robots move and assemble composite building blocks into a structure.
Research engineer Taiwo Olatunde, left, and intern Megan Ochalek, right, observe as robots move and assemble composite building blocks into a structure. The robots worked on their own to complete the structure in a little over 100 hours of operations. To facilitate the team’s watchful monitoring of the robots’ performance, the demonstration was split over several weeks of regular working hours.
Credit: NASA Ames/Dominic Hart

“The ground assembly experiment demonstrated crucial parts of the system: the scalability and reliability of the robots, and the performance of structures they build. This type of test is key for maturing the technology for space applications,” said Christine Gregg, ARMADAS chief engineer at NASA Ames.  

The high strength, stiffness, and low mass of the structural product is comparable to today’s highest-performance structures, like long bridges, aircraft wings, and space structures – such as the International Space Station’s trusses. Such performance is a giant leap for the field of robotically reconfigurable structures. 

A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot c
A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot carries a soccer ball-sized building block called a voxel – short for volumetric pixel – during a demonstration of NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) technology at NASA’s Ames Research Center in Silicon Valley. The voxels are made of strong and lightweight composite materials formed into a shape called a cuboctahedron.
Credit: NASA Ames/Dominic Hart

A Reliable System Relies on Building Blocks

Building blocks are also key to the robotic system autonomy and reliability. 

“Generally, it’s very hard to develop robust autonomous robots that can operate in unstructured environments, like a typical construction site. We turn that problem on its head by making very simple and reliable robots that operate in an extremely structured lattice environment,” said Gregg.  

For the demonstration, the ARMADAS team provided plans for the structure, but they didn’t micromanage the robots’ work. Software algorithms did the job of planning the robots’ tasks. The system practiced the build sequence in simulation before the actual run started. 

While in operation, two robots – stepping inchworm style – walked on the exterior of the structure, moving one soccer ball-sized voxel at a time. One robot fetched the voxels from a supply station and passed them to the second robot that, in turn, placed each voxel on its target location. 

A third robot followed these placements, climbing though the interior space of the voxels and bolting each new voxel to the rest of the structure. 

screenshot-2024-02-29-at-4.50.53-pm.png?
Screenshot from a time-lapse showing robots working autonomously as a team, to assemble a meters-scale shelter structure using hundreds of building blocks during a technology demonstration at NASA’s Ames.
Credit: NASA

“Because the robots align each small step to the structure in what is essentially a 3D grid, simple algorithms with low computation and sensing requirements can achieve high-level autonomy goals. The system builds and error-corrects on its own with no machine vision or external means of measurement,” said Gregg. 

Future work will expand the library of voxel types that the robots work with, to include solar panels, electrical connections, shielding, and more. Each new module type will dramatically expand the possible applications because the robots can mix and match them to meet specific needs and locations. The ARMADAS team is also working on new robot capabilities, such as inspection tools, to ensure that autonomously constructed facilities are safe and sound before astronauts arrive. 

ARMADAS’ technology approach increases what we can do with equipment sent for most deep space exploration missions, and how long we can use them. When a mission completes, robots can disassemble space structures, repurpose the building blocks, and construct designs of the future.

Illustration of an astronaut in a spacesuit standing on the lunar surface near structures being built by small robots.
This artist’s concept shows the autonomous assembly of critical infrastructure needed for a long-duration human presence on the Moon. Here robots are using modular building blocks to construct structures (left, center) that can protect crew, science facilities, or equipment from space radiation and micrometeoroids. Robots are building a large antenna atop a tower (right) as part of a lunar communications network.NASA

In Memoriam

Senior Research Scientist Dr. Andrzej Pohorille Dies

It is with great sadness that we share the news of the passing of our friend and colleague Dr. Andrzej (Andrew) Pohorille, on January 6, 2024.  Andrew was a member of the Exobiology Branch at Ames for more than 27 years.
 

Dr. Andrzej (Andrew) Pohorille
Dr. Andrzej (Andrew) Pohorille

Andrew received his Ph.D. in theoretical physics (with specialty in biophysics) from the University of Warsaw. He did his postdoctoral work with Professor Bernard Pullman at the Institut de Biologie Physico-Chimique in Paris. In 1992, he became a professor of Chemistry and Pharmaceutical Chemistry at the University of California San Francisco, and in 1996 he joined the staff at NASA Ames, where he directed the NASA Center for Computational Astrobiology. In 2000, he received a NASA Group Award for Astrobiology, and in 2002 he was awarded the NASA Exceptional Scientific Achievement Medal. In 2005, he was named Distinguished Lecturer at the Centre for Mathematical Modeling and the National Centre for Space Research in the U.K., and the H. Julian Allen Award at Ames in 2010. Most recently, in December 2023, Andrew was awarded the NASA Exceptional Service Medal for “distinguished service and sustained contributions to NASA’s establishment of Astrobiology as a vibrant, rigorous, and accessible scientific discipline.”

Andrew’s main interests were focused on modeling the origins of life, computer simulations of biomolecular systems, modeling genetic and metabolic networks, and statistical mechanics of condensed phases. He also worked on the development of novel computational methods for parallel and distributed computing. Andrew had worked on developing concepts and designing instruments for microbiology experiments on small satellites and in the lunar environment, and on new ways to organize scientific information.

In recent years, Andrew has served as a co-lead on two large projects: Evolutionary processes that drove the emergence and early distribution of life (EPDEL) and Center for Life Detection Research and Service (CLD/RS). In the latter, his main accomplishment was to lead the design, deployment, and upgrades of the Life Detection Knowledge Base.  Andrew coauthored more than 120 peer-reviewed publications.

The nomination for Andrew’s Exceptional Service Medal included the statement, “Through his wide-ranging technical contributions, tireless community organizing, and one-on-one mentorship of many, he exemplifies the meaning of “exceptional service”. 

Andrew will be truly missed by all of us.

Statistical Summary of Activities of the Protective Service Division’s Security/Law Enforcement and Fire Protection Services Units for Period Ending December 2023

Oct-Dec2023SecurityChart
Oct-Dec2023SecurityChart
Oct-Dec2023FireChart
Oct-Dec2023FireChart

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to MacLean Engineering & Applied Technologies, LLC of Houston to provide simulation and advanced software services to the agency.
      The Simulation and Advanced Software Services II (SASS II) contract includes services from Oct. 1, 2025, through Sept. 30, 2030, with a maximum potential value not to exceed $150 million. The contract is a single award, indefinite-delivery/indefinite-quality contract with the capability to issue cost-plus-fixed-fee task orders and firm-fixed-price task orders.
      Under the five-year SASS II contract, the awardee is tasked to provide simulation and software services for space-based vehicle models and robotic manipulator systems; human biomechanical representations for analysis and development of countermeasures devices; guidance, navigation, and control of space-based vehicles for all flight phases; and space-based vehicle on-board computer systems simulations of flight software systems. Responsibilities also include astronomical object surface interaction simulation of space-based vehicles, graphics support for simulation visualization and engineering analysis, and ground-based and onboarding systems to support human-in-the-loop training.
      Major subcontractors include Tietronix Software Inc. in Houston and VEDO Systems, LLC, in League City, Texas.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      Chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Technology Johnson Space Center View the full article
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up Meteor Showers Eclipses Daily Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network A.M./P.M. Planet Watching, Plus the Eagle Constellation
      Mars shines in the evening, and is joined briefly by Mercury. Jupiter joins Venus as the month goes on. And all month, look for Aquila the eagle.
      Skywatching Highlights
      All Month – Planet Visibility:
      Venus: Shines brightly in the east each morning during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. Mars: Sits in the west, about 20 degrees above the horizon as twilight fades. Sets a couple of hours after dark. Jupiter: Starts to become visible low in the east in the hour before sunrise after mid-month. You’ll notice it rises a bit higher each day through August, quickly approaching closer to Venus each morning. Mercury: Visible very low in the west (10 degrees or lower) the first week or so in July. Find it for a short time before it sets, beginning 30-45 minutes after sunset. Saturn: Rises around midnight and climbs to a point high in the south as dawn approaches. Daily Highlights:
      July 1 – 7 – Mercury is relatively bright and easy to spot without a telescope, beginning about 30-45 minutes after sunset for the first week or so of July. You will need an unobstructed view toward the horizon, and note that it sets within an hour after the Sun.
      July 21 & 22 – Moon, Venus, & Jupiter – Look toward the east this morning to find a lovely scene, with the crescent Moon and Venus, plus several bright stars. And if you have a clear view toward the horizon, Jupiter is there too, low in the sky.
      July 28 – Moon & Mars – The crescent Moon appears right next to Mars this evening after sunset.
      All month – Constellation: Aquila – The Eagle constellation, Aquila, appears in the eastern part of the sky during the first half of the night. Its brightest star, Altair, is the southernmost star in the Summer Triangle, which is an easy-to-locate star pattern in Northern Hemisphere summer skies.
      Transcript
      What’s Up for July? Mars shines in the evening sky, sixty years after its first close-up,
      July Planet Viewing
      Venus brightens your mornings, and the eagle soars overhead.
      First up, Mercury is visible for a brief time following sunset for the first week of July. Look for it very low in the west 30 to 45 minutes after sundown. It sets within the hour after that, so be on the ball if you want to catch it!
      Mars is visible for the first hour or two after it gets dark. You’ll find it sinking lower in the sky each day and looking a bit dimmer over the course of the month, as our two planets’ orbits carry them farther apart. The crescent Moon appears right next to Mars on the 28th.
      Sky chart showing Mercury and Mars in the western sky following sunset in early July. NASA/JPL-Caltech July is the 60th anniversary of the first successful flyby of Mars, by NASA’s Mariner 4 spacecraft in 1965. Mariner 4 sent back the first photos of another planet from deep space, along with the discovery that the Red Planet has only a very thin, cold atmosphere.
      Next, Saturn is rising late in the evening, and by dawn it’s high overhead to the south.
      Looking to the morning sky, Venus shines brightly all month. You’ll find it in the east during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. And as the month goes on, Jupiter makes its morning sky debut,
      Sky chart showing Venus in the morning sky in July. NASA/JPL-Caltech rising in the hour before sunrise and appearing a little higher each day.
      By the end of the month, early risers will have the two brightest planets there greeting them each morning. They’re headed for a super-close meetup in mid-August, and the pair will be a fixture of the a.m. sky through late this year. Look for them together with the crescent moon on the 21st and 22nd.
      Aquila, The Eagle
      From July and into August, is a great time to observe the constellation Aquila, the eagle.
      Sky chart showing the shape and orientation of the constellation Aquila in the July evening sky. Aquila’s brightest star, Altair, is part of the Summer Triangle star pattern. NASA/JPL-Caltech This time of year, it soars high into the sky in the first half of the night. Aquila represents the mythical eagle that was a powerful servant and messenger of the Greek god Zeus. The eagle carried his lightning bolts and was a symbol of his power as king of the gods.
      To find Aquila in the sky, start by locating its brightest star, Altair. It’s one the three bright stars in the Summer Triangle, which is super easy to pick out during summer months in the Northern Hemisphere. Altair is the second brightest of the three, and sits at the southernmost corner of the triangle.
      The other stars in Aquila aren’t as bright as Altair, which can make observing the constellation challenging if you live in an area with a lot of light pollution. It’s easier, though, if you know how the eagle is oriented on the sky. Imagine it’s flying toward the north with its wings spread wide, its right wing pointed toward Vega. If you can find Altair, and Aquila’s next brightest star, you can usually trace out the rest of the spread-eagle shape from there. ​​The second half of July is the best time of the month to observe Aquila, as the Moon doesn’t rise until later then, making it easier to pick out the constellation’s fainter stars.
      Observing the constellation Aquila makes for a worthy challenge in the July night sky. And once you’re familiar with its shape, it’s hard not to see the mythical eagle soaring overhead among the summertime stars.
      Here are the phases of the Moon for July.
      The phases of the Moon for July 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...