Jump to content

Langley Celebrates Black History Month: Clayton Turner


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

This is a photo of Clayton P. Turner, Director of NASA’s Langley Research Center in Hampton, Virginia. Clayton is wearing a suit and tie and sits on a desk. On his desk are papers, pens and pencils, medals, photos, an American flag, a model plane, and other assorted memorabilia. Buildings can be seen through a window in the background of the photo.
Clayton P. Turner serves as the Director of NASA’s Langley Research Center in Hampton, Virginia. His career at NASA Langley has spanned 33 years.

Clayton P. Turner serves as the Director of NASA’s Langley Research Center in Hampton, Virginia. His career at NASA Langley has spanned 33 years. His experiences prior to his career with NASA include three years of military service. He graduated from Rochester Institute of Technology in Rochester, N.Y. with a bachelor’s degree in electrical engineering. 

  Who or what inspired you to choose your career and why?   

A snowstorm in western New York inspired me to go back to college. An interest in engineering inspired me to pursue an engineering degree. The work of others behind the scenes brought me to NASA.  

When I graduated from high school, I went to college to study what all my friends were studying. I didn’t have the proper motivation, so that didn’t go well. I went into the service and was in the military for three years. I worked as a recording engineer for about ten years. I worked repairing pinball machines and video games. It was in the last career piece where I was in a blizzard, outside on the back of a pickup truck when I decided to go back to college, significantly more motivated! 

I think my story highlights the story of many people: there’s not a storybook path to get to NASA. Everybody’s path will be their own path.

What do you find most rewarding about working with NASA?   

I find it rewarding that we get to reach for new heights to reveal the unknown for the benefit of humankind. We get to change the lives of people in a positive way. We get to impact the country. I have a saying on my board that reads, “We have the privilege to serve our country and the power to unite it.” That’s what’s exciting about being at NASA for me. 

What do you enjoy doing outside of work?   

 I enjoy traveling. The thing I’ve enjoyed the most over the last two years was going to visit my grandson, who is my first grandchild.   

What advice would you give to someone who might be interested in pursuing a career at NASA?   

Once you find your passion and the thing that excites you, you need to come and talk with us at NASA! Yes, we need scientists and engineers, but we need accountants, lawyers, and communications specialists. We have a great need right now for technicians. There is a wide range of fields where you can come and do exactly what I described: reach for new heights to reveal the unknown for the benefit of humankind.   

How does your background and heritage contribute to your perspective and approach in your role at NASA?   

I think what was poured into me as I was growing up and was in the people who surrounded me was a desire and energy to serve and the insistence on making life better for others. That has been a big influence in me. I tend to be a bit of an introvert but because of my culture and because of my background I recognize it’s not actually about me, it’s about what you’re going to do for someone else.

The 2024 theme for Black History Month is “African Americans and the Arts,” spanning the many impacts that Black Americans have had on visual arts, music, cultural movements and more. How have the arts played a role in your life?    

The arts have pulled me out of my shell a bit and allowed me to try new things, experience new things, and listen to new things. If you listen to my playlist on my phone, you’d be surprised at what’s on there, but there are songs that come from a wide range of cultures that just light up my heart and make me think deeply. Being exposed to those things has made a big difference in my life. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Written by Michael Allen
      An international team of astronomers using NASA’s IXPE (Imaging X-ray Polarimetry Explorer), has challenged our understanding of what happens to matter in the direct vicinity of a black hole.
      With IXPE, astronomers can study incoming X-rays and measure the polarization, a property of light that describes the direction of its electric field.
      The polarization degree is a measurement of how aligned those vibrations are to each other. Scientists can use a black hole’s polarization degree to determine the location of the corona – a region of extremely hot, magnetized plasma that surrounds a black hole – and how it generates X-rays.
      This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light. In this depiction, the corona can be seen as a purple haze floating above the underlying accretion disk, and extending slightly inside of its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it. NASA/Caltech-IPAC/Robert Hurt In April, astronomers used IXPE to measure a 9.1% polarization degree for black hole IGR J17091-3624, much higher than they expected based on theoretical models.
      “The black hole IGR J17091-3624 is an extraordinary source which dims and brightens with the likeness of a heartbeat, and NASA’s IXPE allowed us to measure this unique source in a brand-new way.” said Melissa Ewing, the lead of the study based at Newcastle University in Newcastle upon Tyne, England.
      In X-ray binary systems, an extremely dense object, like a black hole, pulls matter from a nearby source, most often a neighboring star. This matter can begin to swirl around, flattening into a rotating structure known as an accretion disc.
      The corona, which lies in the inner region of this accretion disc, can reach extreme temperatures up to 1.8 billion degrees Fahrenheit and radiate very luminous X-rays. These ultra-hot coronas are responsible for some of the brightest X-ray sources in the sky.
      Despite how bright the corona is in IGRJ17091-364, at some 28,000 light-years from Earth, it remains far too small and distant for astronomers to capture an image of it.
      “Typically, a high polarization degree corresponds with a very edge-on view of the corona. The corona would have to be perfectly shaped and viewed at just the right angle to achieve such a measurement,” said Giorgio Matt, professor at the University of Roma Tre in Italy and a co-author on this paper. “The dimming pattern has yet to be explained by scientists and could hold the keys to understanding this category of black holes.”
      The stellar companion of this black hole isn’t bright enough for astronomers to directly estimate the system’s viewing angle, but the unusual changes in brightness observed by IXPE suggest that the edge of the accretion disk was directly facing Earth.
      The researchers explored different avenues to explain the high polarization degree.
      In one model, astronomers included a “wind” of matter lifted from the accretion disc and launched away from the system, a rarely seen phenomenon. If X-rays from the corona were to meet this matter on their way to IXPE, Compton scattering would occur, leading to these measurements.
      Fast Facts
      Polarization measurements from IXPE carry information about the orientation and alignment of emitted X-ray light waves. The high the degree of polarization, the more the X-ray waves are traveling in sync. Most polarization in the corona come from a process known as Compton scattering, where light from the accretion disc bounces off the hot plasma of the corona, gaining energy and aligning to vibrate in the same direction. “These winds are one of the most critical missing pieces to understand the growth of all types of black holes,” said Maxime Parra, who led the observation and works on this topic at Ehime University in Matsuyama, Japan. “Astronomers could expect future observations to yield even more surprising polarization degree measurements.”
      Another model assumed the plasma in the corona could exhibit a very fast outflow. If the plasma were to be streaming outwards at speeds as high as 20% the speed of light, or roughly 124 million miles per hour, relativistic effects could boost the observed polarization.
      In both cases, the simulations could recreate the observed polarization without a very specific edge-on view. Researchers will continue to model and test their predictions to better understand the high polarization degree for future research efforts.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Share
      Details
      Last Updated Aug 12, 2025 EditorBeth RidgewayContactCorinne Edmistoncorinne.m.edmiston@nasa.govLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Chandra
      Space Telescope
      IXPE News
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      Imaging X-ray Polarimetry Explorer (IXPE)
      The Imaging X-ray Polarimetry Explorer (IXPE) is a space observatory built to discover the secrets of some of the most…
      View the full article
    • By NASA
      Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory teamed up to identify a new possible example of a rare class of black holes, identified by X-ray emission (in purple) in this image released on July 24, 2025. Called NGC 6099 HLX-1, this bright X-ray source seems to reside in a compact star cluster in a giant elliptical galaxy. These rare black holes are called intermediate-mass black holes (IMBHs) and weigh between a few hundred to a few 100,000 times the mass of our Sun.
      Learn more about IMBHs and what studying them can tell us about the universe.
      Image credit: Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI)
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left to right, Astronaut Tracy Dyson, Jeremy Shidner, Sara R. Wilson, and Christopher Broadaway pose for a photo after the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Three employees from NASA’s Langley Research Center in Hampton, Virginia recently earned the Silver Snoopy award, a prestigious honor given to NASA employees and contractors across the agency for exceptional achievements related to spaceflight safety or mission success. Christopher Broadaway, Jeremy Shidner, and Sara Wilson received the awards during a ceremony held at the center on July 22. 
      The Silver Snoopy award is given personally by NASA astronauts and is presented to less than one percent of the agency’s workforce annually. The award is one of several overseen by the Space Flight Awareness (SFA) Program at NASA. Established in 1963, the SFA Program is vital in ensuring quality and flight safety of America’s space program. The SFA Program works to highlight the individuals behind the success of NASA’s programs as well as motivate the next generation of innovators and cosmic explorers. 
      Astronaut Tracy Dyson visited Langley to present the Silver Snoopy lapel pin and a framed Silver Snoopy certificate. Dyson flew aboard the space shuttle Endeavor on STS-118, served as flight engineer for Expedition 23/24, and conducted hundreds of hours of scientific investigations aboard the International Space Station for Expedition 70/71. She has spent a total of 373 days in space and dedicated over 23 hours to spacewalks. 
      As a flight engineer with substantial experience, Dyson understands the importance of space flight safety.  
      “Those who are receiving this award didn’t do it because they came nine to five and left. It’s not because it was just their job,” she said. “It’s because it’s their life, and our lives are safer and better for it.” 
      Astronaut Tracy Dyson signs certificates of appreciation prior to the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Silver Snoopy recipient and aerospace engineer Jeremey Shidner echoed Dyson’s perspective. 
      “This level of trust is particularly profound because astronauts understand better than anyone the countless systems, procedures, and people that must work flawlessly for a mission to succeed,” he said. “When astronauts single someone out for recognition, it reflects their confidence that this person embodies the same commitment to excellence and safety that they themselves must maintain.” 
      The prestigious award consists of a certificate of appreciation signed by Dyson, an authentication letter, and a miniature sterling silver lapel pin in the shape of the well-loved character Snoopy from the comic strip “Peanuts.” Each pin awarded has flown in space. The pins awarded to Langley’s recipients flew aboard STS-118. 
      The 2025 Silver Snoopy Award pins NASA/Mark Knopp Here are the three award recipients from Langley and their achievements: 
      Christopher Broadaway: For exemplary support in assisting the Commercial Crew Program ensure safety and mission success in industry partners’ human spaceflight missions. 
      Jeremy Shidner: For significant contributions to the Commercial Crew Program to ensure flight safety and mission success for Entry, Descent, and Landing. Collaborating closely with the Crew Flight Test team and Mission Operations Flight Dynamics Officers, he refined the simulation model to incorporate real pilot performance data, which resulted in increased entry accuracy, eliminating an elevated risk to crew safety. 
      Sara R. Wilson: For engineering excellence in the application of advanced statistical tools and methods characterizing NASA’s human spaceflight missions. She also played a key role in developing standardized tests for advanced lunar spacesuit gloves, creating consistency in evaluating materials for extreme lunar environments. 
      Sarah Reeps and Layla Smith
      NASA Langley Research Center
      Share
      Details
      Last Updated Aug 07, 2025 Related Terms
      Langley Research Center General NASA Centers & Facilities Explore More
      4 min read As NASA Missions Study Interstellar Comet, Hubble Makes Size Estimate
      A team of astronomers has taken the sharpest-ever picture of the unexpected interstellar comet 3I/ATLAS…
      Article 48 minutes ago 7 min read Wade Sisler: Aficionado of Wonder Serving the Cosmos
      Article 3 hours ago 4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
      Article 20 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      A white-tailed deer fawn photographed on a Snapshot Wisconsin trail camera in Vernon County, WI Credit: WI DNR The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this milestone coincides with the project’s 10-year anniversary. Congratulations to the team and everyone who’s participated!
      Snapshot Wisconsin utilizes a statewide network of volunteer-managed trail cameras to monitor and better understand the state’s diverse wildlife from white-tailed deer to snowshoe hares, whooping cranes, and much more.
      “It’s been amazing to get a glimpse of our wild treasures via the Snapshot lens,” said one volunteer. “Satisfying to help advance wildlife research in the digital age.”
      Snapshot Wisconsin was launched in 2013 with help from a NASA grant, and is overseen by the Wisconsin Department of Natural Resources. It recently won a new grant from NASA’s Citizen Science for Earth Systems Program.
      Volunteer classifications of the species present in trail camera photos have fueled many different scientific investigations over the years. You, too, can get involved in the merriment by visiting the project’s site on the Zooniverse crowdsourcing platform and helping classify their latest photo season today!
      Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share








      Details
      Last Updated Aug 06, 2025 Related Terms
      Citizen Science Earth Science Division Explore More
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      2 days ago
      2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes


      Article


      2 weeks ago
      2 min read Bring NASA Science into Your Library!


      Article


      2 weeks ago
      View the full article
    • By NASA
      1 min read
      NASA’s Black Marble: Stories from the Night Sky
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us Viewed from space, Earth at night tells endless stories. Using satellite data, we can track population growth, natural disaster damage, cultural celebrations, and even space weather. Studying these glowing patterns helps us understand human activity, respond to disasters, and witness a changing world.

      Original Video and Assets

      Share








      Details
      Last Updated Aug 04, 2025 Related Terms
      Earth Video Series Explore More
      4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play


      Article


      3 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      3 weeks ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
  • Check out these Videos

×
×
  • Create New...