Jump to content

Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

2022-07-07 08:54

The Michoud Assembly Facility (MAF) is open.


For more information about the NASA Framework for Return to On-Site Work visit nasapeople.nasa.gov.
MAF urges it’s employees to be safe at all times. 
MAF is currently in Hurricane Condition V (Tropical Storm Readiness)


Hurricane Season is in effect from June 1st to November 30th. Please make sure that you have work and personal plan.


GET A GAME PLAN AND BE PREPARED
For more planning information, please refer to http://getagameplan.org for information and sign up for the MAF Alert system for up to date MAF emergency information.

Visit member.everbridge.net/index/892807736729046#/event or text MAFALERT to 888777 to register for alerts.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      ESA Open Days 2025
      Your chance to meet the European Space Agency
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4597-4599: Wide Open Spaces
      NASA’s Mars rover Curiosity acquired this image, of the sweeping Mount Sharp vista into which the rover will drive the weekend of July 11-12, 2025, using its onboard Left Navigation Camera. Curiosity captured the image on July 11, 2025 — Sol 4596, or Martian day 4,596 of the Mars Science Laboratory mission — at 12:01:55 UTC. NASA/JPL-Caltech Written by Michelle Minitti, MAHLI Deputy Principal Investigator, Framework
      Earth planning date: Friday, July 11, 2025
      Imagine this vista as the view out your office window to start your workday. Your natural tendency would be to grab your camera and photograph as much of the view as possible. Curiosity was lucky enough to find herself in this situation today after a successful drive of about 61 meters (about 200 feet) on Wednesday, and the science team operating Curiosity wasted no time papering the scene with mosaics.
      Between Mastcam and ChemCam, we planned 105 images across the scene. Those images will capture the structures underpinning the boxwork ridges we are driving toward, smaller-scale fractures in the near field that might be related to the boxwork ridges, and the back side of a ridge we recently studied in detail, “Volcán Peña Blanca.” Together, the images will help us understand the geologic history of the area that hosts the boxwork ridges, and what conditions existed in this part of Mount Sharp to support their formation.
      We did not neglect the rocks directly in front of the rover as we gazed at our surroundings. Indeed, the bedrock near the rover was nearly uniformly packed with small (less than 1 centimeter, or 0.39 inches) rounded nodules, a characteristic we have not seen for awhile. MAHLI will image three different instances of the nodules while APXS and ChemCam will each analyze two different targets to understand the chemistry of the nodules and the bedrock hosting them.
      REMS, RAD, and DAN will continue to monitor the Martian environment and subsurface throughout the weekend. Additionally, we planned multiple observations of dust devils, the amount of dust in the atmosphere, and clouds including a cloud movie timed to match the overflight of the CASSIS instrument. Our drive will take us to the foot of the smooth slope seen in the distance of the above image. That slope is the ramp we will take to the top of a big boxwork structure, where surely other delightful vistas await.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 16, 2025 Related Terms
      Blogs Explore More
      3 min read Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars


      Article


      22 hours ago
      4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca


      Article


      5 days ago
      3 min read Continuing the Quest for Clays


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 4 min read
      NASA-Assisted Scientists Get Bird’s-Eye View of Population Status
      Through the eBird citizen scientist program, millions of birders have recorded their observations of different species and submitted checklists to the Cornell Lab of Ornithology. Through a partnership with NASA, the lab has now used this data to model and map bird population trends for nearly 500 North American species.
      Led by Alison Johnston of the University of St. Andrews in Scotland, the researchers reported that 75% of bird species in the study are declining at wide-range scales. And yet this study has some good news for birds. The results, published in Science in May, offer insights and projections that could shape the future conservation of the places where birds make their homes.
      “This project demonstrates the power of merging in situ data with NASA remote sensing to model biological phenomena that were previously impossible to document,” said Keith Gaddis, NASA’s Biological Diversity and Ecological Forecasting program manager at the agency’s headquarters in Washington, who was not involved in the study.  “This data provides not just insight into the Earth system but also provides actionable guidance to land managers to mitigate biodiversity loss.”
      Rock wren in Joshua Tree National Park. National Park Service / Jane Gamble A team from Cornell, the University of St. Andrews, and the American Bird Conservancy used land imaging data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to distinguish among such specific bird habitats as open forests, dense shrublands, herbaceous croplands, and forest/cropland mosaics. They also drew on NASA weather information and water data that matched the dates and times when birders made their reports.
      When combined with a 14-year set of eBird checklists — 36 million sets of species observations and counts, keyed directly to habitats — the satellite data gave researchers almost a strong foundation to produce a clear picture of the health of bird populations. But there was one missing piece.
      Wrestling with Wren Data
      While some eBird checklists come from expert birders who’ve hiked deep into wildlife preserves, others are sent in by novices watching bird feeders and doing the dishes. This creates what Cornell statistician Daniel Fink described as “an unstructured, very noisy data set,” complete with gaps in the landscape that birders did not reach and, ultimately, some missing birds.
      To account for gaps where birds weren’t counted, the researchers trained machine learning models to fill in the maps based on the remote sensing data. “For every single species — say the rock wren — we’ve created a simulation that mimics the species and a variety of ways that it could respond to changes in the environment,” Johnston said. “Thousands of simulations underlie the results we showed.”
      CornellLab eBird The researchers achieved unprecedented resolution, zeroing in on areas 12 miles by 12 miles (27 km by 27 km), the same area as Portland, Oregon. This new population counting method can also be applied to eBird data from other locations, Fink said. “Now we’re using modeling to track bird populations — not seasonally through the year, but acrossthe years — a major milestone,” he added.
      “We’ve been able to take citizen science data and, through machine learning methodology, put it on the same footing as traditionally structured surveys, in terms of the type of signal we can find,” said Cornell science product manager Tom Auer. “It will increase the credibility and confidence of people who use this information for precise conservation all over the globe.”
      The Up Side
      Since 1970, North America has lost one-quarter of its breeding birds, following a global trend of declines across species. The causes range from increased pollution and land development to changing climate and decreased food resources. Efforts to reverse this loss depend on identifying the areas where birds live at highest risk, assessing their populations, and pinpointing locations where conservation could help most.
      For 83% of the reported species in the new study, the decline was greatest in spots where populations had previously been most abundant — indicating problems with the habitat.
      “Even in species where populations are declining a lot, there are still places of hope, where the populations are going up,” Johnston said. The team found population increases in the maps of 97% of the reported species. “That demonstrates that there’s opportunity for those species.”
      “Birds face so many challenges,” said Cornell conservationist Amanda Rodewald. “This research will help us make strategic decisions about making changes that are precise, effective, and less costly. This is transformative. Now we can really drill in and know where specifically we’re going to be able to have the most positive impact in trying to stem bird declines.”
      By Karen Romano Young
      NASA Headquarters, Washington
      Share








      Details
      Last Updated Jun 25, 2025 Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      1 week ago
      1 min read From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks.


      Article


      1 week ago
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
    • By NASA
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      NASA software engineer Brandon Carver updates how the main data acquisition software processes information at NASA’s Stennis Space Center, where he has contributed to the creation of the center’s first-ever open-source software.NASA/Danny Nowlin Syncom Space Services software engineer Shane Cravens, the chief architect behind the first-ever open-source software at NASA’s Stennis Space Center, verifies operation of the site’s data acquisition hardware.NASA/Danny Nowlin NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has released its first-ever open-source software, a peer review tool to facilitate more efficient and collaborative creation of systems applications, such as those used in its frontline government and commercial propulsion test work.
      “Everyone knows NASA Stennis as the nation’s premier rocket propulsion test site,” said David Carver, acting chief of the Office of Test Data and Information Management. “We also are engaged in a range of key technology efforts. This latest open-source tool is an exciting example of that work, and one we anticipate will have a positive and widespread impact.”
      The new NASA Data Acquisition System Peer Review Tool was developed over several years, built on lessons learned as site developers and engineers created software tools for use across the center’s sprawling test complex. It is designed to simplify and amplify the collaborative review process, allowing developers to build better and more effective software applications.
      The new NASA Stennis Peer Review tool was developed using the same software processes that built NDAS. As center engineers and developers created software to monitor and analyze data from rocket propulsion tests, they collaborated with peers to optimize system efficiency. What began as an internal review process ultimately evolved into the open-source code now available to the public.
      “We refined it (the peer review tool) over a period of time, and it has improved our process significantly,” said Brandon Carver (no relation), a NASA Stennis software engineer. “In early efforts, we were doing reviews manually, now our tool handles some of these steps for us. It has allowed us to focus more on reviewing key items in our software.”
      Developers can improve time, efficiency, and address issues earlier when conducting software code reviews. The result is a better, more productive product.
      The NASA Stennis tool is part of the larger NASA Data Acquisition System created at the center to help monitor and collect propulsion test data. It is designed to work with National Instruments LabVIEW, which is widely used by systems engineers and scientists to design applications. LabVIEW is unique in using graphics (visible icon objects) instead of a text-based programming language to create applications. The graphical approach makes it more challenging to compare codes in a review process.
      “You cannot compare your code in the same way you do with a text-based language,” Brandon Carver said. “Our tool offers a process that allows developers to review these LabVIEW-developed programs and to focus more time on reviewing actual code updates.”
      LabVIEW features a comparison tool, but NASA Stennis engineers identified ways they could improve the process, including by automating certain steps. The NASA Stennis tool makes it easier to post comments, pictures, and other elements in an online peer review to make discussions more effective.  
      The result is what NASA Stennis developers hope is a more streamlined, efficient process. “It really optimizes your time and provides everything you need to focus on right in front of you,” Brandon Carver said. “That’s why we wanted to open source this because when we were building the tool, we did not see anything like it, or we did not see anything that had features that we have.”
      “By providing it to the open-source community, they can take our tool, find better ways of handling things, and refine it,” Brandon Carver said. “We want to allow those groups to modify it and become a community around the tool, so it is continuously improved. Ultimately, a peer review is to make stronger software or a stronger product and that is also true for this peer review tool.
      “It is a good feeling to be part of the process and to see something created at the center now out in the larger world across the agency,” Brandon Carver said. “It is pretty exciting to be able to say that you can go get this software we have written and used,” he acknowledged. “NASA engineers have done this. I hope we continue to do it.”
      To access the peer review tool developed at NASA Stennis, visit NASA GitHub.
      Read More Share
      Details
      Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
  • Check out these Videos

×
×
  • Create New...