Jump to content

NASA Grants to Engage Students in Quiet Supersonic Community Overflight


Recommended Posts

  • Publishers
Posted
x-59.jpg?w=2048
NASA’s X-59 quiet supersonic research aircraft is dramatically lit for a “glamour shot,” captured before its Jan. 12, 2024, rollout at Lockheed Martin’s Skunk Works facility in Palmdale where the airplane was constructed.
Credit: Lockheed Martin / Michael Jackson

NASA has issued new grants to five universities to help develop education plans for the community overflight phase of the agency’s Quesst mission, which aims to demonstrate the possibility of supersonic flight without the typical loud sonic booms.

The new grants, from NASA’s Office of STEM Engagement, will provide each university team with $40,000 to develop science, technology, engineering, and mathematics (STEM) engagement strategic implementation plans for those Quesst community overflights. The awards will focus on plans for engaging with students and educators in the communities that NASA will eventually select for overflights. This will help ensure communities are accurately informed about this phase of Quesst and what involvement in the mission will look like for their community.

“The Quesst mission is unique at NASA, with community input playing a major part in its success,” said Eric Miller, deputy mission integration manager for Quesst. “These new awards will allow NASA to learn from other STEM professionals, informing us as we develop a framework to effectively engage with students and educators.”

The selected institutions and their projects, are:

  • Carthage College, Kenosha, Wisconsin – STEM Quesst, Wisconsin Space Grant
  • Cornell University, Ithaca, New York –Quesst Community Overflight STEM Engagement New York Space Grant Consortium
  • Old Dominion University, Norfolk, Virginia – Engaging the National NASA Space Grant Network in Support of the Quesst Community Overflight STEM Engagement
  • University of Puerto Rico, San Juan, San Juan, Puerto Rico – Space Grant Quesst Community Overflight STEM Engagement: Sounds of Our World
  • University of California, San Diego, San Diego, California – California Space Grant Planning Support for the Quesst Community Overflight STEM Engagement

The deliverables from the awards will help inform a student engagement approach that can be implemented in any community, state, and region that may be selected. NASA has yet to select communities for the overflights.

Through Quesst, NASA is developing its X-59 experimental aircraft, which will fly faster than the speed of sound while producing only a quiet sonic “thump.” After the X-59 completes a series of flight tests, NASA will fly it over a number of communities across the country, gathering data about what people below hear.

For more information about Quesst, visit:

https://www.nasa.gov/mission/quesst/

-end-

Gerelle Dodson
Headquarters, Washington
202-358-4637
gerelle.q.dodson@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. Full image below. Credits:
      NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
      Auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms or molecules of gas. On Earth these are known as the Northern and Southern Lights. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than those in Earth’s atmosphere. Earth’s auroras are caused by solar storms — when charged particles from the Sun rain down on the upper atmosphere, energize gases, and cause them to glow in shades of red, green and purple.
      Image A: Close-up Observations of Auroras on Jupiter
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
      These observations of Jupiter’s auroras, taken at a wavelength of 3.36 microns (F335M) were captured with Webb’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Jupiter has an additional source for its auroras: The strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the Sun also reaches the planet. Jupiter’s large and powerful magnetic field captures all of the charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.
      Image B: Pullout of Aurora Observations on Jupiter (NIRCam Image)
      These observations of Jupiter’s auroras (shown on the left of the above image) at 3.35 microns (F335M) were captured with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to capture fast-varying auroral features. New data was captured with Webb’s NIRCam (Near-Infrared Camera) Dec. 25, 2023, by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.
      “What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”
      In particular, the team studied emission from the trihydrogen cation (H3+), which can be created in auroras. They found that this emission is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.
      The team also uncovered some unexplained observations in their data.
      “What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with NASA’s Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don’t understand how this happens.”
      Video: Webb Captures Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured a spectacular light show on Jupiter — an enormous display of auroras unlike anything seen on Earth. These infrared observations reveal unexpected activity in Jupiter’s atmosphere, challenging what scientists thought they knew about the planet’s magnetic field and particle interactions. Combined with ultraviolet data from Hubble, the results have raised surprising new questions about Jupiter’s extreme environment.
      Producer: Paul Morris. Writer: Thaddeus Cesari. Narrator: Professor Jonathan Nichols. Images: NASA, ESA, CSA, STScI. Music Credit: “Zero Gravity” by Brice Davoli [SACEM] via Koka Media [SACEM], Universal Production Music France [SACEM], and Universal Production Music. The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission.
      These results were published today in the journal Nature Communications.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature Communications.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Bethany Downer – Bethany.Downer@esawebb.org
      ESA/Webb, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: NASA’s Webb Captures Neptune’s Auroras for the First Time
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Jupiter



      What Is the Solar Wind?



      Juno


      NASA’s Juno spacecraft has explored Jupiter, its moons, and rings since 2016, gathering breakthrough science and breathtaking imagery.

      Share








      Details
      Last Updated May 12, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Jupiter Planets Science & Research The Solar System View the full article
    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      NASA astronauts Anne McClain (bottom) and Nichole Ayers (top), both Expedition 73 Flight Engineers, checkout spacesuit hardware in the Quest airlock and review procedures for a May 1 spacewalk. Credit: NASA Johnson Space Center NASA astronauts Nichole Ayers and Anne McClain will answer prerecorded questions about science, technology, engineering, and mathematics from students in Bethpage, New York. The two astronauts are currently aboard the International Space Station.
      Watch the 20-minute Earth-to-space call at 12:45 p.m. EDT on Friday, May 16, on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Tuesday, May 13, by contacting Francesca Russell at: frussell@syntaxny.com or 516-644-4330.
      The event is hosted by Central Boulevard Elementary School. As part of the call, students will highlight their year-long reading program, “Reading is a Blast-Exploring a Universe of Stories.”
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated May 09, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters International Space Station (ISS) Johnson Space Center View the full article
    • By NASA
      Students from Eau Gallie High School in Melbourne, Florida, visited the Prototype Development Laboratory at NASA’s Kennedy Space Center in Florida on Monday, April 28, 2025. The science, technology, engineering, and mathematics (STEM) participants are interested in technical trades and had the chance to hear from technicians at the Prototype Development Laboratory who design, fabricate, and evaluate protypes, test articles, and test support equipment.
      NASA Kennedy’s Office of STEM Engagement provides opportunities to attract, engage, and enable students seeking careers in science, technology, engineering, and mathematics.
      “My technical training in high school plays a huge role in the work I do every day in the Prototype Laboratory,” said Spencer Wells, mechanical engineering technician at Prototype Development Laboratory. “If it weren’t for that training, I’m convinced I wouldn’t be here at NASA.”
      Some of the participants also have worked on a project to design and build a wheel for a lunar excavator demonstration mission as part of the NASA HUNCH program, an instructional partnership between NASA and educational institutions.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      Explore Hubble Science Hubble Space Telescope NASA’s Hubble Pinpoints… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities   7 Min Read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      This six-panel illustration of a tidal disruption event around a supermassive black hole shows the collision with a star followed by an explosion detected in X-ray as well as Hubble Space Telescope visible-light observations. Credits:
      Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space Jaws.”
      Lurking 600 million light-years away, within the inky black depths between stars, there is an invisible monster gulping down any wayward star that plummets toward it. The sneaky black hole betrayed its presence in a newly identified tidal disruption event (TDE) where a hapless star was ripped apart and swallowed in a spectacular burst of radiation. These disruption events are powerful probes of black hole physics, revealing the conditions necessary for launching jets and winds when a black hole is in the midst of consuming a star, and are seen as bright objects by telescopes.
      The new TDE, called AT2024tvd, allowed astronomers to pinpoint a wandering supermassive black hole using NASA’s Hubble Space Telescope, with similar supporting observations from NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope that also showed that the black hole is offset from the center of the galaxy.
      The paper will be published in an upcoming issue of The Astrophysical Journal Letters.
      This six-panel illustration of a tidal disruption event around a supermassive black hole shows the following: 1) A supermassive black hole is adrift inside a galaxy, its presence only detectable by gravitational lensing; 2) A wayward star gets swept up in the black hole’s intense gravitational pull; 3) The star is stretched or “spaghettified” by gravitational tidal effects; 4) The star’s remnants form a disk around the black hole; 5) There is a period of black hole accretion, pouring out radiation across the electromagnetic spectrum, from X-rays to radio wavelengths; and 6) The host galaxy, seen from afar, contains a bright flash of energy that is offset from the galaxy’s nucleus, where an even more massive black hole dwells. Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Surprisingly, this one million-solar-mass black hole doesn’t reside exactly in the center of the host galaxy, where supermassive black holes are typically found, and actively gobble up surrounding material. Out of approximately 100 TDE events recorded by optical sky surveys so far, this is the first time an offset TDE has been identified. The rest are associated with the central black holes of galaxies.
      In fact, at the center of the host galaxy there is a different supermassive black hole weighing 100 million times the mass of the Sun. Hubble’s optical precision shows the TDE was only 2,600 light-years from the more massive black hole at the galaxy’s center. That’s just one-tenth the distance between our Sun and the Milky Way’s central supermassive black hole.
      This bigger black hole spews out energy as it accretes infalling gas, and it is categorized as an active galactic nucleus. Strangely, the two supermassive black holes co-exist in the same galaxy, but are not gravitationally bound to each other as a binary pair. The smaller black hole may eventually spiral into the galaxy’s center to merge with the bigger black hole. But for now, it is too far separated to be gravitationally bound.
      A TDE happens when an infalling star is stretched or “spaghettified” by a black hole’s immense gravitational tidal forces. The shredded stellar remnants are pulled into a circular orbit around the black hole. This generates shocks and outflows with high temperatures that can be seen in ultraviolet and visible light.
      “AT2024tvd is the first offset TDE captured by optical sky surveys, and it opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys,” said lead study author Yuhan Yao of the University of California at Berkeley. “Right now, theorists haven’t given much attention to offset TDEs. “I think this discovery will motivate scientists to look for more examples of this type of event.”
      This is a Hubble Space Telescope image of distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) A Flash in the Night
      The star-snacking black hole gave itself away when several ground-based sky survey telescopes observed a flare as bright as a supernova. But unlike a supernova, astronomers know that this came from a black hole snacking on a star because the flare was very hot, and showed broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The Zwicky Transient Facility at Caltech’s Palomar Observatory, with its 1.2-meter telescope that surveys the entire northern sky every two days, first observed the event.
      “Tidal disruption events hold great promise for illuminating the presence of massive black holes that we would otherwise not be able to detect,” said Ryan Chornock, associate adjunct professor at UC Berkeley and a member of the ZTF team. “Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them.”
      The flare was seemingly offset from the center of a bright massive galaxy as cataloged by  Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), the Sloan Digital Sky Survey, and the DESI Legacy Imaging Survey. To better determine that it was not at the galactic center, Yao’s team used NASA’s Chandra X-ray Observatory to confirm that X-rays from the flare site were also offset.
      It took the resolving power of Hubble to settle any uncertainties. Hubble’s sensitivity to ultraviolet light also allows it to pinpoint the location of the TDE, which is much bluer than the rest of the galaxy.
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Both telescopes caught a tidal disruption event (TDE) caused by the black hole eating a star. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) Origin Unknown
      The black hole responsible for the TDE is prowling inside the bulge of the massive galaxy. The black hole only becomes apparent every few tens of thousands of years when it “burps” from capturing a star, and then it goes quiet again until its next meal comes along.
      How did the black hole get off-center? Previous theoretical studies have shown that black holes can be ejected out of the centers of galaxies because of three-body interactions, where the lowest-mass member gets kicked out. This may be the case here, given the stealthy black hole’s close proximity to the central black hole. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,“ said Yao.
      An alternative explanation is that the black hole is the surviving remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. If that is the case, the black hole might eventually spiral in to merge with the central active black hole sometime in the very far future. So at present, astronomers don’t know if it’s coming or going.
      Erica Hammerstein, another UC Berkeley postdoctoral researcher, scrutinized the Hubble images as part of the study, but did not find any evidence of a past galaxy merger. But she explained, “There is already good evidence that galaxy mergers enhance TDE rates, but the presence of a second black hole in AT2024tvd’s host galaxy means that at some point in this galaxy’s past, a merger must have happened.”
      Specialized for different kinds of light, observatories like Hubble and Chandra work together to pinpoint and better understand fleeting events like these. Future telescopes that will also be optimized for capturing transient events like this one include the National Science Foundation’s Vera C. Rubin Observatory and NASA’s upcoming Nancy Grace Roman Space Telescope. They will provide more opportunities for follow-up Hubble observations to zero in on a transient’s exact location.
      Explore More:

      Monster Black Holes are Everywhere


      Hubble Focus: Black Holes – Into the Vortex e-Book


      Science Behind the Discoveries: Black Holes


      Hubble’s Universe Uncovered: Black Holes

      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      ZTF is a public-private partnership, with equal support from the ZTF Partnership and from the U.S. National Science Foundation.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      Six panel illustration of Black Hole TDE AT2024tvd
      This is a six-panel illustration of a tidal disruption event around a supermassive back hole.


      Black Hole TDE AT2024tvdu00a0
      This is a Hubble Space Telescope image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole TDE AT2024tvd (Hubble + Chandra)
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole TDE AT2024tvd Compass Image
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole Tidal Disruption Event
      This is a video animation of a tidal disruption event (TDE), an intense flash of radiation caused by the supermassive black hole eating a star. The video begins by zooming into a galaxy located 600 million light-years away.




      Share








      Details
      Last Updated May 08, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center
      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
  • Check out these Videos

×
×
  • Create New...