Jump to content

Pose Bowl: Spacecraft Detection and Pose Estimation Challenge


Recommended Posts

  • Publishers
Posted
Satellite image of another spacecraft above a red, sandy landscape.

In the Pose Bowl: Spacecraft Detection and Pose Estimation Challenge, solvers will help NASA develop algorithms that could be run on inspector (chaser) spacecraft. There are two tracks, with different associated prizes. In the Detection Track, solvers develop object detection solutions that identify the boundaries of spacecraft in an image. In the Pose Estimation Track, solvers develop solutions that identify changes in the position and orientation (pose) of the chaser spacecraft camera across a sequence of images.

Award: $40,000 in total prizes

Open Date: February 20, 2024

Close Date: May 14, 2024

For more information, visit: https://www.drivendata.org/competitions/group/competition-nasa-spacecraft/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Registration is now open for the United States Space Force’ s second annual Artificial Intelligence Challenge.
      View the full article
    • By NASA
      NASA/Charles Beason Two students guide their rover through an obstacle course in this April 11, 2025, image from the 2025 Human Exploration Rover Challenge. The annual engineering competition – one of NASA’s longest standing student challenges – is in its 31st year. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. More than 500 students with 75 teams from around the world participated, representing 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      See the 2025 winners.
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

      Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos
      Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.
      To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms
      It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.
      A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.
      The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.
      Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.
      Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.
      Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.
      The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.
      Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin For additional details, see the entry for this project on NASA TechPort .
      Project Lead: Prof. Mark Moldwin, University of Michigan
      Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.
      Share








      Details
      Last Updated Jun 17, 2025 Related Terms
      Technology Highlights Heliophysics Science Mission Directorate Science-enabling Technology Explore More
      2 min read Hubble Studies a Spiral’s Supernova Scene


      Article


      4 days ago
      5 min read NASA Launching Rockets Into Radio-Disrupting Clouds


      Article


      5 days ago
      2 min read Hubble Captures Starry Spectacle


      Article


      2 weeks ago
      View the full article
    • By NASA
      by Dary Felix Garcia
      NASA is preparing to make history by sending humans to the Moon’s South Pole. There, astronauts will conduct moonwalks for exploration, science experiments, and prepare humanity for the journey to Mars. Missions of this scale require extensive planning, especially when accounting for emergency scenarios such as a crew member becoming incapacitated.  
      To address this critical risk, the South Pole Safety Challenge invited the public to develop a compact, effective device capable of safely rescuing astronauts during emergency situations on the Moon’s surface. Given the harsh and unpredictable conditions of the lunar South Pole, the rescue system must be lightweight, easy to use, and able to transport an incapacitated crew member weighing approximately 755 lbs. (343 kg), representing the crew member and their suit, without the help of the lunar rover. It must also be capable of covering up to 1.24 miles (2 kilometers) across slopes as steep as 20 degrees. 
      “The initiative saved the government an estimated $1,000,000 and more than three  years of work had the solutions been produced using in-house existing resources,” said Ryon Stewart, acting Program Manager of NASA’s Center of Excellence for Collaborative Innovation. “The effort demonstrated how crowdsourcing provides NASA with a wide diversity of innovative ideas and skills.”
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.  
      First Place: VERTEX by Hugo Shelley – A self-deploying four-wheeled motorized stretcher that converts from a compact cylinder into a frame that securely encases an immobilized crew member for transport up to 6.2 miles (10 kilometers).   Second Place: MoonWheel by Chamara Mahesh – A foldable manual trolley designed for challenging terrain and rapid deployment by an individual astronaut.   Third Place: Portable Foldable Compact Emergency Stretcher by Sbarellati team – A foldable stretcher compatible with NASA’s Exploration Extravehicular Activity spacesuit.  Third Place: Advanced Surface Transport for Rescue (ASTRA) by Pierre-Alexandre Aubé – A collapsible three-wheeled device with a 1.2 mile (2 kilometer) range. Third Place: Getting Rick to Roll! by InventorParents – A rapidly deployable, tool-free design suited for functionality in low gravity settings.  NASA is identifying how to integrate some features of the winning ideas into current and future mission designs. Most intriguing are the collapsible concepts of many of the designs that would save crucial mass and volume. Additionally, the submissions offered innovative wheel designs to enhance current concepts. NASA expects to incorporate some features into planning for surface operations of the Moon. 
      HeroX hosted the challenge on behalf of NASA’s Extravehicular Activity and Human Surface Mobility Program. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.   
      Find more opportunities at https://www.nasa.gov/get-involved/ 
      View the full article
    • By NASA
      4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
      At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
      Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
      NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
      Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
      The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
      NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
      Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
      Keya Shah
      Softgoods Engineering Technologist
      Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
      “SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
      As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
      “Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
      Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
      “There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
      Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
      Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
      Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
      “It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
      Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
      “NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
      It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
      Felix Arwen
      Softgoods Engineer
      Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
      Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
      “While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
      SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
      Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
      “Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...