Members Can Post Anonymously On This Site
NASA Johnson Director to Discuss Exploration Park at ASCENDxTexas
-
Similar Topics
-
By NASA
Credit: NASA Following an international signing ceremony Thursday, NASA congratulated Norway on becoming the latest country to join the Artemis Accords, committing to the peaceful, transparent, and responsible exploration of space.
“We’re grateful for the strong and meaningful collaboration we’ve already had with the Norwegian Space Agency,” said acting NASA Administrator Janet Petro. “Now, by signing the Artemis Accords, Norway is not only supporting the future of exploration, but also helping us define it with all our partners for the Moon, Mars, and beyond.”
Norway’s Minster of Trade and Industry Cecilie Myrseth signed the Artemis Accords on behalf of the country during an event at the Norwegian Space Agency (NOSA) in Oslo. Christian Hauglie-Hanssen, director general of NOSA, and Robert Needham, U.S. Embassy Chargé d’Affaires for Norway, participated in the event. Petro contributed remarks in a pre-recorded video message.
“We are pleased to be a part of the Artemis Accords,” said Myrseth. “This is an important step for enabling Norway to contribute to broader international cooperation to ensure the peaceful exploration and use of outer space.”
In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, the first set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Amber Jacobson / Elizabeth Shaw
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated May 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Artemis Accords Office of International and Interagency Relations (OIIR) View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Chaitén Volcano in southern Chile erupted on May 2, 2008 for the first time inn 9,000 years. NASA satellites that monitor changes in vegetation near volcanoes could aid in earlier eruption warnings.Jeff Schmaltz, MODIS Rapid Response Team, NASA Goddard Space Flight Center Scientists know that changing tree leaves can indicate when a nearby volcano is becoming more active and might erupt. In a new collaboration between NASA and the Smithsonian Institution, scientists now believe they can detect these changes from space.
As volcanic magma ascends through the Earth’s crust, it releases carbon dioxide and other gases which rise to the surface. Trees that take up the carbon dioxide become greener and more lush. These changes are visible in images from NASA satellites such as Landsat 8, along with airborne instruments flown as part of the Airborne Validation Unified Experiment: Land to Ocean (AVUELO).
Ten percent of the world’s population lives in areas susceptible to volcanic hazards. People who live or work within a few miles of an eruption face dangers that include ejected rock, dust, and surges of hot, toxic gases. Further away, people and property are susceptible to mudslides, ashfalls, and tsunamis that can follow volcanic blasts. There’s no way to prevent volcanic eruptions, which makes the early signs of volcanic activity crucial for public safety. According to the U.S. Geological Survey, NASA’s Landsat mission partner, the United States is one of the world’s most volcanically active countries.
Carbon dioxide released by rising magma bubbles up and heats a pool of water in Costa Rica near the Rincón de LaVieja volcano. Increases in volcanic gases could be a sign that a volcano is becoming more active.Josh Fisher/Chapman University When magma rises underground before an eruption, it releases gases, including carbon dioxide and sulfur dioxide. The sulfur compounds are readily detectable from orbit. But the volcanic carbon dioxide emissions that precede sulfur dioxide emissions – and provide one of the earliest indications that a volcano is no longer dormant – are difficult to distinguish from space.
The remote detection of carbon dioxide greening of vegetation potentially gives scientists another tool — along with seismic waves and changes in ground height—to get a clear idea of what’s going on underneath the volcano. “Volcano early warning systems exist,” said volcanologist Florian Schwandner, chief of the Earth Science Division at NASA’s Ames Research Center in California’s Silicon Valley, who had teamed up with Fisher and Bogue a decade ago. “The aim here is to make them better and make them earlier.”
“Volcanoes emit a lot of carbon dioxide,” said volcanologist Robert Bogue of McGill University in Montreal, but there’s so much existing carbon dioxide in the atmosphere that it’s often hard to measure the volcanic carbon dioxide specifically. While major eruptions can expel enough carbon dioxide to be measurable from space with sensors like NASA’s Orbiting Carbon Observatory 2, detecting these much fainter advanced warning signals has remained elusive. “A volcano emitting the modest amounts of carbon dioxide that might presage an eruption isn’t going to show up in satellite imagery,” he added.
Gregory Goldsmith from Chapman University launches a slingshot into the forest canopy to install a carbon dioxide sensor in the canopy of a Costa Rican rainforest near the Rincón de LaVieja volcano.Josh Fisher/Chapman University Because of this, scientists must trek to volcanoes to measure carbon dioxide directly. However, many of the roughly 1,350 potentially active volcanoes worldwide are in remote locations or challenging mountainous terrain. That makes monitoring carbon dioxide at these sites labor-intensive, expensive, and sometimes dangerous.
Volcanologists like Bogue have joined forces with botanists and climate scientists to look at trees to monitor volcanic activity. “The whole idea is to find something that we could measure instead of carbon dioxide directly,” Bogue said, “to give us a proxy to detect changes in volcano emissions.”
“There are plenty of satellites we can use to do this kind of analysis,” said volcanologist Nicole Guinn of the University of Houston. She has compared images collected with Landsat 8, NASA’s Terra satellite, ESA’s (European Space Agency) Sentinel-2, and other Earth-observing satellites to monitor trees around the Mount Etna volcano on the coast of Sicily. Guinn’s study is the first to show a strong correlation between tree leaf color and magma-generated carbon dioxide.
Confirming accuracy on the ground that validates the satellite imagery is a challenge that climate scientist Josh Fisher of Chapman University is tackling with surveys of trees around volcanoes. During the March 2025 Airborne Validation Unified Experiment: Land to Ocean mission with NASA and the Smithsonian Institution scientists deployed a spectrometer on a research plane to analyze the colors of plant life in Panama and Costa Rica.
Alexandria Pivovaroff of Occidental College measures photosynthesis in leaves extracted from trees exposed to elevated levels of carbon dioxide near a volcano in Costa Rica.Josh Fisher/Chapman University Fisher directed a group of investigators who collected leaf samples from trees near the active Rincon de la Vieja volcano in Costa Rica while also measuring carbon dioxide levels. “Our research is a two-way interdisciplinary intersection between ecology and volcanology,” Fisher said. “We’re interested not only in tree responses to volcanic carbon dioxide as an early warning of eruption, but also in how much the trees are able to take up, as a window into the future of the Earth when all of Earth’s trees are exposed to high levels of carbon dioxide.”
Relying on trees as proxies for volcanic carbon dioxide has its limitations. Many volcanoes feature climates that don’t support enough trees for satellites to image. In some forested environments, trees that respond differently to changing carbon dioxide levels. And fires, changing weather conditions, and plant diseases can complicate the interpretation of satellite data on volcanic gases.
Chapman University visiting professor Gaku Yokoyama checks on the leaf-measuring instrumentation at a field site near the Rincón de LaVieja volcano.Josh Fisher/Chapman University Still, Schwandner has witnessed the potential benefits of volcanic carbon dioxide observations first-hand. He led a team that upgraded the monitoring network at Mayon volcano in the Philippines to include carbon dioxide and sulfur dioxide sensors. In December 2017, government researchers in the Philippines used this system to detect signs of an impending eruption and advocated for mass evacuations of the area around the volcano. Over 56,000 people were safely evacuated before a massive eruption began on January 23, 2018. As a result of the early warnings, there were no casualties.
Using satellites to monitor trees around volcanoes would give scientists earlier insights into more volcanoes and offer earlier warnings of future eruptions. “There’s not one signal from volcanoes that’s a silver bullet,” Schwandner said. “And tracking the effects of volcanic carbon dioxide on trees will not be a silver bullet. But it will be something that could change the game.”
By James Riordon
NASA’s Earth Science News Team
Media contact: Elizabeth Vlock
NASA Headquarters
About the Author
James R. Riordon
Share
Details
Last Updated May 15, 2025 LocationAmes Research Center Related Terms
Volcanoes Earth Natural Disasters Tsunamis Explore More
4 min read Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases
Two NASA pathfinding missions were recently deployed into low-Earth orbit, where they are demonstrating novel…
Article 1 year ago 4 min read NASA Announces New System to Aid Disaster Response
In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
Article 11 months ago 4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…
Article 9 months ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Getty Images NASA has selected two more university student teams to help address real-world aviation challenges, through projects aimed at using drones for hurricane relief and improved protection of air traffic systems from cyber threats.
The research awards were made through NASA’s University Student Research Challenge (USRC), which provides student-led teams with opportunities to contribute their novel ideas to advance NASA’s Aeronautics research priorities.
As part of USRC, students participate in real-world aspects of innovative aeronautics research both in and out of the laboratory.
“USRC continues to be a way for students to push the boundary on exploring the possibilities of tomorrow’s aviation industry.” said Steven Holz, who manages the USRC award process. “For some, this is their first opportunity to engage with NASA. For others, they may be taking their ideas from our Gateways to Blue Skies competition and bringing them closer to reality.”
In the case of one of the new awardees, North Carolina State University in Raleigh applied for their USRC award after refining a concept that made them a finalist in NASA’s 2024 Gateways to Blue Skies competition.
Each team of students selected for a USRC award receives a NASA grant up to $80,000 and is tasked with raising additional funds through student-led crowdfunding. This process helps students develop skills in entrepreneurship and public communication.
The new university teams and research topics are:
North Carolina State University in Raleigh
“Reconnaissance and Emergency Aircraft for Critical Hurricane Relief” will develop and deploy advanced Unmanned Aircraft Systems (UAS) designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
The team includes Tobias Hullette (team lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, and Hadie Sabbah, with faculty mentor Felix Ewere.
Texas A&M University, in College Station
“Context-Aware Cybersecurity for UAS Traffic Management” will develop, test, and pursue the implementation of an aviation-context-aware network authentication system for the holistic management of cybersecurity threats to enable future drone traffic control systems.
The team includes Vishwam Raval (team lead), Nick Truong, Oscar Leon, Kevin Lei, Garett Haynes, Michael Ades, Sarah Lee, and Aidan Spira, with faculty mentor Sandip Roy.
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
9 min read ARMD Research Solicitations (Updated May 1)
Article 2 weeks ago 4 min read Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar
Article 3 weeks ago 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated May 15, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
University Student Research Challenge Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
-
By NASA
The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.
Briefing participants include:
Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space Sarah Walker, director, Dragon mission management, SpaceX Sergio Palumberi, mission manager, ESA (European Space Agency) Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency) Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit) To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:
https://bit.ly/437SAAh
The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.
During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.
The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Alexis DeJarnette
Axiom Space, Houston
alexis@axiomspace.com
Share
Details
Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
Humans in Space Commercial Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
-
By NASA
6 min read
NASA Observes First Visible-light Auroras at Mars
On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.
The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI “This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.
Picking the right aurora
On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.
Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.
While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.
Coordinating the picture-perfect moment
Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.
“The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.
That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.
At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.
“This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.
“When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”
A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.
“This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).
The future of aurora on Mars
By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.
“Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”
On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.
—
By Willow Reed
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder
Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Share
Details
Last Updated May 14, 2025 Related Terms
Mars Goddard Space Flight Center MAVEN (Mars Atmosphere and Volatile EvolutioN) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.