Jump to content

The Marshall Star for February 7, 2024


Recommended Posts

  • Publishers
Posted
17 Min Read

The Marshall Star for February 7, 2024

Joseph Pelfrey talks during a 2023 all-hands meeting at Marshall.

NASA Administrator Announces New Marshall Space Flight Center Director

NASA Administrator Bill Nelson on Feb. 5 named Joseph Pelfrey director of the agency’s Marshall Space Flight Center, effective immediately. Pelfrey has served as acting center director since July 2023.

“Joseph is a respected leader who shares the passion for innovation and exploration at NASA Marshall. As center director, he will lead the entire Marshall workforce, which includes a world-renowned team of scientists, engineers, and technologists who have a hand in nearly every NASA mission,” said Nelson. “I am confident that under Joseph’s leadership, Marshall will continue to make critical advancements supporting Artemis and Moon to Mars that will benefit all humanity.” 

Marshall Space Flight Center Director Joseph Pelfrey.
Marshall Space Flight Center Director Joseph Pelfrey.
NASA

NASA Marshall is one of the agency’s largest field centers, and manages NASA’s Michoud Assembly Facility, where some of the largest elements of the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis campaign are manufactured. The center also is responsible for the oversight and execution of an approximately $5 billion portfolio comprised of human spaceflight, science, and technology development efforts. Its workforce consists of nearly 7,000 employees, both civil servants and contractors. 

“Marshall is renowned for its expertise in exploration and scientific discovery, and I am honored and humbled to be chosen to lead the center into the future,” said Pelfrey. “We will continue to shape the future of human space exploration by leading SLS and human landing system development for Artemis and leveraging our capabilities to make critical advancements in human landing and cargo systems, habitation and transportation systems, advanced manufacturing, mission operations, and cutting-edge science and technology missions.”

Pelfrey talks during a 2023 all-hands meeting at Marshall.
Pelfrey talks during a 2023 all-hands meeting at Marshall.
NASA/Charles Beason

Prior to joining NASA, Pelfrey worked in industry, supporting development of space station payload hardware. He began his NASA career as an aerospace engineer in the Science and Mission Systems Office, going on to serve in various leadership roles within the International Space Station Program, the Marshall Engineering Directorate and the SLS Spacecraft/Payload Integration and Evolution Office. He also served as manager for the Commercial Orbital Transportation Services Project at Marshall and the Exploration and Space Transportation Development Office in the Flight Programs and Partnerships Office.

Appointed to the Senior Executive Service in 2016, Pelfrey served as the associate director for operations in Engineering, later becoming deputy manager and subsequently manager for Marshall’s Human Exploration Development and Operations Office. He was appointed as Marshall’s deputy center director in April 2022.

Pelfrey received a bachelor’s degree in Aerospace Engineering from Auburn University in 2000.

Learn more about Pelfrey.

› Back to Top

NASA to Demonstrate Autonomous Navigation System on Moon

By Rick Smith

When the second CLPS (Commercial Lunar Payload Services) delivery is launched to the Moon in mid-February, its NASA payloads will include an experiment that could change how human explorers, rovers, and spacecraft independently track their precise location on the Moon and in cis-lunar space.

Demonstrating autonomous navigation, the Lunar Node-1 experiment, or LN-1, is a radio beacon designed to support precise geolocation and navigation observations for landers, surface infrastructure, and astronauts, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. These radio beacons also can be used in space to help with orbital maneuvers and with guiding landers to a successful touchdown on the lunar surface.

An close up image of the Lunar Node-1 payload covered in a silver wrapping to protect it in space.
Lunar Node-1, or LN-1, an autonomous navigation payload that will change how human explorers safely traverse the Moon’s surface and live and work in lunar orbit, awaits liftoff as part of Intuitive Machines’ IM-1 mission, its first under NASA’s Commercial Lunar Payload Services initiative. LN-1 was developed, built, and tested at NASA’s Marshall Space Flight Center.
NASA/Intuitive Machines

“Imagine getting verification from a lighthouse on the shore you’re approaching, rather than waiting on word from the home port you left days earlier,” said Evan Anzalone, principal investigator of LN-1 and a navigation systems engineer at NASA’s Marshall Space Flight Center. “What we seek to deliver is a lunar network of lighthouses, offering sustainable, localized navigation assets that enable lunar craft and ground crews to quickly and accurately confirm their position instead of relying on Earth.”

The system is designed to operate as part of a broader navigation infrastructure, anchored by a series of satellites in lunar orbit as being procured under NASA’s Lunar Communications Relay and Navigation Systems project. Together, future versions of LN-1 would utilize LunaNet-defined standards to provide interoperable navigation reference signals from surface beacons as well as orbital assets.

Currently, navigation beyond Earth is heavily reliant on point-to-point services provided by NASA’s Deep Space Network, an international array of giant radio antennas which transmit positioning data to interplanetary spacecraft to keep them on course. These measurements typically are relayed back to Earth and processed on the ground to deliver information back to the traveling vehicle.

But when seconds count during orbital maneuvers, or among explorers traversing uncharted areas of the lunar surface, LN-1 offers a timely improvement, Anzalone said.

The Nova-C lunar lander sits in front of an American flag with dramatic lighting against it.
IM-1, the first NASA Commercial Launch Program Services launch for Intuitive Machines’ Nova-C lunar lander, will carry multiple payloads to the Moon, including Lunar Node-1, demonstrating autonomous navigation via radio beacon to support precise geolocation and navigation among lunar orbiters, landers, and surface personnel. NASA’s CLPS initiative oversees industry development of small robotic landers and rovers to support NASA’s Artemis campaign.
NASA/Intuitive Machines

The CubeSat-sized experiment is one of six payloads included in the NASA delivery manifest for Intuitive Machines of Houston, which will be launched via a SpaceX Falcon 9 from Cape Canaveral, Florida. Designated IM-1, the launch is the company’s first for NASA’s CLPS initiative, which oversees industry development, testing, and launch of small robotic landers and rovers supporting NASA’s Artemis campaign.

The Nova-C lander is scheduled to touch down near Malapert A, a lunar impact crater in the Moon’s South Pole region.

LN-1 relies on networked computer navigation software known as MAPS (Multi-spacecraft Autonomous Positioning System). Developed by Anzalone and researchers at Marshall, MAPS was successfully tested on the International Space Station in 2018 using NASA’s Space Communications and Navigation testbed.

Engineers at Marshall conducted all structural design, thermal and electronic systems development, and integration and environmental testing of LN-1 as part of the NASA-Provided Lunar Payloads project funded by the agency’s Science Mission Directorate. Anzalone and his team delivered the payload in 2021, having performed the payload build during the COVID pandemic. Since then, they refined the operating procedures, conducted thorough testing of the integrated flight system, and in October 2023, oversaw installation of LN-1 on Intuitive Machines’ lander.

Demonstrating autonomous navigation, the Lunar Node-1 experiment, or LN-1, is a radio beacon designed to support precise geolocation and navigation observations to orbiters, landers, and surface personnel, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. The system is designed to operate as part of a broader navigation infrastructure, anchored by a series of satellites in lunar orbit as being procured under NASA’s Lunar Communications Relay and Navigation Systems project. (NASA)

The payload will transmit information briefly each day during the journey to the Moon. Upon lunar touchdown, the LN-1 team will conduct a full systems checkout and begin continuous operations within 24 hours of landing. NASA’s Deep Space Network will receive its transmissions, capturing telemetry, Doppler tracking, and other data and relaying it back to Earth. Researchers at NASA’s Jet Propulsion Laboratory and at Morehead State University in Kentucky also will monitor LN-1’s transmissions throughout the mission, which is scheduled to last approximately 10 days.

Eventually, as the technology is proven and its infrastructure expanded, Anzalone expects LN-1 to evolve from a single lighthouse on the lunar shore into a key piece of a much broader infrastructure, helping NASA evolve its navigation system into something more akin to a bustling metropolitan subway network, wherein every train is tracked in real time as it travels its complex route.

“Spacecraft, surface vehicles, base camps and exploratory digs, even individual astronauts on the lunar surface,” Anzalone said. “LN-1 could connect them all and help them navigate more accurately, creating a reliable, more autonomous lunar network.”

Marshall’s LN-1 team is already discussing future Moon to Mars applications for LN-1 with NASA’s SCaN (Space Communications and Navigation) program – which oversees more than 100 NASA and partner missions. They’re also consulting with the European Space Agency and Japan Aerospace Exploration Agency, aiding the push to unite spacefaring nations via an interconnected, interoperable global architecture.

“Eventually, these same technologies and applications we’re proving at the Moon will be vital on Mars, making those next generations of human explorers safer and more self-sufficient as they lead us out into the solar system,” Anzalone said.

NASA’s CLPS initiative enables NASA to buy a complete commercial robotic lunar delivery service from leading aerospace contractors. The provider is responsible for launch services, owns its lander design, and leads landing operations. Learn more here.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

Marshall Wraps Up Mentoring Month with Mega Meal, Mentoring Panel

By Jessica Barnett

There was no shortage of opportunities in January to learn about the benefits of mentoring from those who have experienced them firsthand. In fact, there was so much to share, team members at NASA’s Marshall Space Flight Center kept the celebration going through the first week of February.

“It was so great to see so many from our workforce out and excited about mentorship,” said Selina Salgado, who serves as the Mentoring Program coordinator at Marshall. “At every event throughout the month and when reading through the highlights, I was encouraged by the engagement and commitment that the Marshall team showed for development.”

Marshall Space Flight Center Chief Financial Officer Rhega Gordon, center, who participates in the center’s Mentorship Program, discusses the benefits of mentoring and her advice for getting the most out of a mentoring relationship during a panel event held Feb. 6 in Activities Building 4316 as part of Marshall’s celebration of National Mentoring Month. Joining her on stage are two of her mentees, program specialist Kim Henry and Marshall Sustainability Coordinator Malene McElroy.
Marshall Space Flight Center Chief Financial Officer Rhega Gordon, center, who participates in the center’s Mentorship Program, discusses the benefits of mentoring and her advice for getting the most out of a mentoring relationship during a panel event held Feb. 6 in Activities Building 4316 as part of Marshall’s celebration of National Mentoring Month. Joining her on stage are two of her mentees, program specialist Kim Henry and Marshall Sustainability Coordinator Malene McElroy.
NASA/Danielle Burleson

This year’s events included Meals with Mentors, in which team members could have lunch and chat with mentors from a variety of backgrounds and departments, and an in-person mentoring panel Feb. 6 featuring Marshall Chief Financial Officer Rhega Gordon and two of her mentees, Marshall Sustainability Coordinator Malene McElroy and program specialist Kim Henry.

Marshall also participated in the launch for AMPED (Agencywide Mentoring Pilot for Engagement & Development), which pairs mentors and mentees together using the MentorcliQ platform. Civil servants can sign up for AMPED now through Feb. 19.

Marshall team members can also participate in MERGE, a NASA-built mentoring application that allows users to create and view profiles to identify potential mentors or mentees. MERGE is recommended for casual, informal, or short-term mentoring relationships, as well as shadowing opportunities. Civil servants and contractors can sign up at any time.

Marshall Associate Center Director, Technical, Larry Leopard engages with center team members during a Meals with Mentors event Feb. 6 in Activities Building 4316. Team members were encouraged to chat with center leaders and potential mentors at the event as part of Marshall’s celebration of National Mentoring Month.
Marshall Associate Center Director, Technical, Larry Leopard engages with center team members during a Meals with Mentors event Feb. 6 in Activities Building 4316. Team members were encouraged to chat with center leaders and potential mentors at the event as part of Marshall’s celebration of National Mentoring Month.
NASA/Danielle Burleson

In addition to in-person events and showcasing new options for finding a mentor or mentee, there were weekly tips to help team members get the most out of their mentorship journey and interviews with mentors and mentees, who shared their experiences, advice, and more.

“Our hope was that employees would reengage with mentorship, find value in their current relationships, or provide resources and guidance to help those who were new to the world of mentoring,” Salgado said.

Marshall team members can start or continue their mentorship journey by visiting the Marshall Mentorship Program page on Inside Marshall.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Mission Success is in Our Hands: Ashley Marlar

By Wayne Smith

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the fourth in a Marshall Star series profiling team members featured in the testimonial banners. The next Mission Success is in Our Hands Shared Experience Forum will be Feb. 22 and will feature Robert Conway, deputy director of NASA’s Safety Center. The 11:30 a.m. event will be in Activities Building 4316 for Marshall team members.

Ashley Marlar is the Jacobs Space Exploration Group team lead of Operations Engineering Support at Marshall, responsible for managing a team of four Jacobs Transportation engineers supporting the center’s Transportation and Logistics Engineering Office. Marlar and her team develop and execute detailed plans, procedures, and engineered lift analyses to transport NASA’s SLS (Space Launch System) flight hardware and test articles, as well as hardware for various other programs and projects at Marshall.

Ashley Marlar is the Jacobs Space Exploration Group Team Lead of Operations Engineering Support at NASA’s Marshall Space Flight Center, supporting the Transportation and Logistics Engineering Office.
Ashley Marlar is the Jacobs Space Exploration Group Team Lead of Operations Engineering Support at NASA’s Marshall Space Flight Center, supporting the Transportation and Logistics Engineering Office.
NASA/Charles Beason

She has worked at Marshall for eight years, including six years with Jacobs, starting her career as a transportation and logistics engineer. A native of Hazel Green, Alabama, Marlar is a graduate of the University of Alabama in Huntsville where she earned a bachelor’s degree in aerospace engineering.

Question: How does your work support the safety and success of NASA and Marshall missions?

Marlar: The thorough coordination and detailed planning of each hardware movement is absolutely critical to the safety of the hardware and the personnel handling it, and the success of the mission. We must anticipate risks and consider contingency plans. Whether it’s offloading a welded component from the delivery truck, installing a test article into a structural test stand, or shipping the SLS core stage on the barge Pegasus from NASA’s Michoud Assembly Facility to the agency’s Kennedy Space Center, we meticulously plan every step of the operation to ensure the hardware is delivered without mishaps or delays.

Question: What does the Mission Success is in Our Hands initiative mean to you?

Marlar: To me it means every individual plays a vital role in making our missions safe and successful. We all contribute to NASA’s success by bringing our unique skills and perspectives to the table. And we are all responsible for the safety of ourselves and each other by having the courage to speak up and ask questions.

Question: Do you have a story or personal experience you can share that might help others understand the significance of mission assurance or flight safety?

Marlar: One of the things we do to help ensure mission safety is perform dry runs, like dress rehearsals, for many of our major moves. For example, we utilized the core stage Pathfinder vehicle to practice our transportation methods and iron out all the little details of our procedures without risking the actual core stage flight unit. We repeatedly practiced installing the Pathfinder onto ground support equipment, lifting and rotating it from horizontal to vertical orientation, and installing it into the B2 test stand at Stennis Space Center. Then we did everything in reverse. We did this multiple times to identify any challenges, safety issues, or workflow inefficiencies we might face when it came time to perform these tasks with the real thing, and then made many procedural changes and some hardware changes to mitigate those risks and resolve numerous issues. All of this paid off in a big way when we transported, lifted, and tested the flight core stage flawlessly.

Question: How can we work together better to achieve mission success?

Marlar: Mission success is a team effort and a shared responsibility. I think it’s vital to encourage and empower everyone to speak up and share their ideas and concerns as well as hold each other accountable. We should continue to reinforce the importance of communication and engagement, particularly as we emerge from a pandemic. 

Question: Do you have anything else you’d like to share?

Marlar: My primary goal is to make sure my team gets home safe and sound at the end of the day. As important and grand as our mission is, our biggest asset is our people. We are a collective of many pieces in a large puzzle, but every piece is equally important to the whole.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Taps Alabama A&M University to Host Break the Ice Lunar Challenge

By Savannah Bullard

NASA has selected Alabama A&M University’s Agribition Center in Huntsville to host the final level of the agency’s Break the Ice Lunar Challenge, using indoor and outdoor space to ground test the finalists’ solutions.

The challenge opened in 2020 to find novel solutions for excavating icy lunar regolith and delivering acquired resources in extreme environmental conditions. In alignment with NASA’s Moon to Mars objectives, the challenge aims to develop technologies that could support a sustained human presence on the Moon.

An external image of the Alabama A&M University Agribition Center from the front facade. The Center is a cream-colored stone building with a curved roof, floor-to-ceiling windows, and concrete steps that lead to a covered awning, framed by deep-red structural beams above. Shrubs and crepe myrtle trees frame the foreground and steps leading up to the building. Photo courtesy of AAMU Extension
Alabama A&M University’s Agribition Center will host the final Break the Ice Lunar Challenge featuring a large dirt-based indoor arena on 40 acres of land, offering plenty of green space to build Break the Ice’s complex testing infrastructure.
Photo Courtesy: Alabama A&M University Extension

Throughout the challenge, competitors have designed, built, and independently tested robots that could theoretically withstand the harsh environments inside permanently shadowed regions of the lunar South Pole. The six finalists who succeeded in Phase 2: Level 2 of the challenge were announced in December 2023.

“We were looking for a unique set of criteria to house the Break the Ice Lunar competition, so we partnered with Jacobs Space Exploration Group in finding a facility,” said Denise Morris, NASA Centennial Challenges program manager at NASA’s Marshall Space Flight Center. “Alabama A&M is a good fit for this challenge because of the on-site capabilities they have and being close to NASA facilities makes logistics much easier.”

Located a few miles east of the Alabama A&M University campus, the Agribition (agriculture + exhibition) Center is managed by the Alabama Cooperative Extension System with support from the university and its College of Agricultural, Life, and Natural Sciences. Its indoor arena features a large dirt space, typically equipped to support rodeos and other agricultural expos. Outside, the center sits on roughly 40 acres of land, offering plenty of green space to build the competition’s complex infrastructure.

The final Phase 2: Level 3 testing will occur June 10-12, 2024. There are two components that each team will focus on mastering: excavation and transportation.

Six identically sized concrete slabs will be set up inside the arena for the finalists’ robots to dig. The slabs, measuring 300 cubic feet, will have qualities similar to a permanently shadowed crater located at the Moon’s South Pole. A gravity-offloading crane and pulley system will lift the excavators while working, simulating the one-sixth gravity experienced on the Moon.

Each team will have one hour to dig as much material as possible or until they reach the payload capacity of their excavation robot. Up to three top-performing teams will earn an opportunity to test their solution inside one of the thermal vacuum chambers located at Marshall, which can simulate the temperature and vacuum conditions at the lunar South Pole.

Outside the Agribition Center, challenge teams will take turns on a custom-built track outfitted with slopes, boulders, pebbles, rocks, and gravel to simulate the lunar surface. This volatile surface will stretch approximately 300 meters and include several twists and turns for more intermediate handling.

Each team will get one hour on the track to deliver a payload and return to the starting point. Times, distances, and pitfalls will be recorded independently.

“These two testing methods address the excavation and transportation of large quantities of icy regolith, which are some of NASA’s current top technology gaps,” said Naveen Vetcha, NASA challenge manager at Jacobs Space Exploration Group. “This competition has enabled teams to develop lightweight, energy efficient, reliable and durable hardware, all while performing well in Moon-like conditions like reduced gravity and complex terrain.”

The total prize purse is $1.5 million, with the first-place winner taking home $1 million and the second-place winner receiving $500,000.

The Break the Ice Lunar Challenge is a NASA Centennial Challenge led by Marshall, with support from NASA’s Kennedy Space Center. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors.

Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications.

› Back to Top

Mars, Venus Appear Very Close to Each Other this Month

By Lauren Perkins

February is a great month for the early rising skygazers. Venus has been bright in the morning sky all year, rising just before the Moon.

This graphic shows Venus, Earth and its Moon, and Mars.
This graphic shows Venus, Earth and its Moon, and Mars.
NASA/JPL-Caltech/ESA

In the minutes before dawn this week, Venus will rise to the upper left of the waning crescent Moon and will be joined by Mars. Over the coming weeks, Venus will shift towards Mars until they appear to merge into one another, just a half a degree apart, on Feb. 22.

To view this planetary illusion, you’ll need to find a place with a clear view of the western horizon – few to no tall trees or buildings.

For more skygazing opportunities, including observing spiral galaxy M81, check out the video from Jet Propulsion Laboratory’s monthly “What’s Up” video series.

Perkins, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Glittering Glimpse of Star Birth From NASA’s Webb Telescope
      Webb captured this sparkling scene of star birth in Pismis 24. Full image and caption below. Credits:
      Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope. What appears to be a craggy, starlit mountaintop kissed by wispy clouds is actually a cosmic dust-scape being eaten away by the blistering winds and radiation of nearby, massive, infant stars.
      Called Pismis 24, this young star cluster resides in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. Its proximity makes this region one of the best places to explore the properties of hot young stars and how they evolve.
      At the heart of this glittering cluster is the brilliant Pismis 24-1. It is at the center of a clump of stars above the jagged orange peaks, and the tallest spire is pointing directly toward it. Pismis 24-1 appears as a gigantic single star, and it was once thought to be the most massive known star. Scientists have since learned that it is composed of at least two stars, though they cannot be resolved in this image. At 74 and 66 solar masses, respectively, the two known stars are still among the most massive and luminous stars ever seen.
      Image A: Pismis 24 (NIRCam Image)
      Webb captured this sparkling scene of star birth in Pismis 24, a young star cluster about 5,500 light-years from Earth in the constellation Scorpius. This region is one of the best places to explore the properties of hot young stars and how they evolve. Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) Captured in infrared light by Webb’s NIRCam (Near-Infrared Camera), this image reveals thousands of jewel-like stars of varying sizes and colors. The largest and most brilliant ones with the six-point diffraction spikes are the most massive stars in the cluster. Hundreds to thousands of smaller members of the cluster appear as white, yellow, and red, depending on their stellar type and the amount of dust enshrouding them. Webb also shows us tens of thousands of stars behind the cluster that are part of the Milky Way galaxy.
      Super-hot, infant stars –some almost 8 times the temperature of the Sun – blast out scorching radiation and punishing winds that are sculpting a cavity into the wall of the star-forming nebula. That nebula extends far beyond NIRCam’s field of view. Only small portions of it are visible at the bottom and top right of the image. Streamers of hot, ionized gas flow off the ridges of the nebula, and wispy veils of gas and dust, illuminated by starlight, float around its towering peaks.
      Dramatic spires jut from the glowing wall of gas, resisting the relentless radiation and winds. They are like fingers pointing toward the hot, young stars that have sculpted them. The fierce forces shaping and compressing these spires cause new stars to form within them. The tallest spire spans about 5.4 light-years from its tip to the bottom of the image. More than 200 of our solar systems out to Neptune’s orbit could fit into the width its tip, which is 0.14 lightyears.
      In this image, the color cyan indicates hot or ionized hydrogen gas being heated up by the massive young stars. Dust molecules similar to smoke here on Earth are represented in orange. Red signifies cooler, denser molecular hydrogen. The darker the red, the denser the gas. Black denotes the densest gas, which is not emitting light. The wispy white features are dust and gas that are scattering starlight.
      Video A: Expedition to Star Cluster Pismis 24
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This scientific visualization takes viewers on a journey to a glittering young star cluster called Pismis 24. NASA’s James Webb Space Telescope captured this fantastical scene in the heart of the Lobster Nebula, approximately 5,500 light-years from Earth. Video: NASA, ESA, CSA, STScI, Leah Hustak (STScI), Christian Nieves (STScI); Image Processing: Alyssa Pagan (STScI); Script Writer: Frank Summers (STScI); Narration: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA Video B: Zoom to Pismis 24
      This zoom-in video shows the location of the young star cluster Pismis 24 on the sky. It begins with a ground-based photo of the constellation Scorpius by the late astrophotographer Akira Fujii. The sequence closes in on the Lobster Nebula, using views from the Digitized Sky Survey. As the video homes in on a select portion, it fades to a VISTA image in infrared light. The zoom continues in to the region around Pismis 24, where it transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
      Video: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI); Narration: Frank Summers (STScI); Script Writer: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA, Akira Fujii, DSS The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about Hubble’s view of Pismis 24
      Listen to a sonification of Hubble’s view of Pismis 24
      Animation Video: “How Dense Pillars Form in Molecular Clouds”
      Read more: Webb’s Star Formation Discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      James Webb Space Telescope (JWST) View the full article
    • By NASA
      NASA/Nichole Ayers On July 26, 2025, NASA astronaut Nichole Ayers took this long-exposure photograph – taken over 31 minutes from a window inside the International Space Station’s Kibo laboratory module – capturing the circular arcs of star trails.
      In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.
      Image credit: NASA/Nichole Ayers
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      This graphic features data from NASA’s Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star’s interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA’s Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.
      Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star’s interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.
      Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.
      “It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting,” said Toshiki Sato of Meiji University in Japan who led the study. “Now we’ve taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary.”
      As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements – extending all the way down to the center of the star. 
      Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.
      The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.
      “Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon,” said co-author Kai Matsunaga of Kyoto University in Japan. “This is a violent event where the barrier between these two layers disappears.”
      This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A’s supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon. 
      The survival of these regions not only provides critical evidence for the star’s upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.
      There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.
      Finally, the strong turbulent flows created by the star’s internal changes may have promoted the development of the supernova blast wave, facilitating the star’s explosion.
      “Perhaps the most important effect of this change in the star’s structure is that it may have helped trigger the explosion itself,” said co-author Hiroyuki Uchida, also of Kyoto University. “Such final internal activity of a star may change its fate—whether it will shine as a supernova or not.”
      These results have been published in the latest issue of The Astrophysical Journal and are available online.
      To learn more about Chandra, visit:
      https://science.nasa.gov/chandra
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of Cassiopeia A, a donut-shaped supernova remnant located about 11,000 light-years from Earth. Included in the image is an inset closeup, which highlights a region with relative abundances of silicon and neon.
      Over three hundred years ago, Cassiopeia A, or Cas A, was a star on the brink of self-destruction. In composition it resembled an onion with layers rich in different elements such as hydrogen, helium, carbon, silicon, sulfur, calcium, and neon, wrapped around an iron core. When that iron core grew beyond a certain mass, the star could no longer support its own weight. The outer layers fell into the collapsing core, then rebounded as a supernova. This explosion created the donut-like shape shown in the composite image. The shape is somewhat irregular, with the thinner quadrant of the donut to the upper left of the off-center hole.
      In the body of the donut, the remains of the star’s elements create a mottled cloud of colors, marbled with red and blue veins. Here, sulfur is represented by yellow, calcium by green, and iron by purple. The red veins are silicon, and the blue veins, which also line the outer edge of the donut-shape, are the highest energy X-rays detected by Chandra and show the explosion’s blast wave.
      The inset uses a different color code and highlights a colorful, mottled region at the thinner, upper left quadrant of Cas A. Here, rich pockets of silicon and neon are identified in the red and blue veins, respectively. New evidence from Chandra indicates that in the hours before the star’s collapse, part of a silicon-rich layer traveled outwards, and broke into a neighboring neon-rich layer. This violent breakdown of layers created strong turbulent flows and may have promoted the development of the supernova’s blast wave, facilitating the star’s explosion. Additionally, upheaval in the interior of the star may have produced a lopsided explosion, resulting in the irregular shape, with an off-center hole (and a thinner bite of donut!) at our upper left.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants Supernovae The Universe Explore More
      6 min read Meet NASA’s Artemis II Moon Mission Masterminds
      Article 22 hours ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 3 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
      Scientists have devised a new method for mapping the spottiness of distant stars by using…
      Article 3 days ago View the full article
    • By USH
      NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech? 

      In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics. 
      One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle. 
      Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk. 
      The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit. 
      The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity. 
      Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
        View the full article
  • Check out these Videos

×
×
  • Create New...