Jump to content

50 Years Ago: Skylab 4 Astronauts Return From Record-Breaking Spaceflight


Recommended Posts

  • Publishers
Posted

The longest spaceflight up to that time ended on Feb. 8, 1974, when Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue splashed down in the Pacific Ocean after their 84-day mission aboard Skylab, America’s first space station. During their stay, they carried out a challenging research program, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package, and solar observations with instruments mounted in the Apollo Telescope Mount (ATM). To study newly discovered Comet Kohoutek, scientists added cometary observations to the crew’s already busy schedule, including adding a far ultraviolet camera to Skylab’s instrument suite. The astronauts conducted four spacewalks, a then-record for a single Earth orbital mission.

View from the Skylab 4 Command and Service Module Skylab during the final fly around Distant view of Skylab
Left: View from the Skylab 4 Command and Service Module (CSM) shortly after undocking from Skylab. Middle: Skylab during the final fly around, with the CSM’s shadow visible on the solar array. Right: Distant view of Skylab as the crew departed.

Carr, Gibson, and Pogue spent the first week of February 1974 finishing up their experiments, preparing the station for uncrewed operations, and packing their Command Module (CM) with science samples and other items for return to Earth. On Feb. 8, they closed all the hatches to Skylab and undocked their CM. Carr flew a complete loop around Skylab, the crew inspecting the station, noting the discoloration caused by solar irradiation. The sunshade installed by the Skylab 3 crew appeared to be in good condition. Finally, Carr fired the spacecraft’s thrusters to separate from the station. Three and a half hours after undocking, they received the go for the deorbit burn and fired the Service Module’s (SM) main engine. After 84 days in weightlessness, the burn felt like “a kick in the pants” to the astronauts. They separated the CM from the SM, but when Carr tried to reorient it with its heat shield forward for reentry, nothing happened! Carr switched to a backup system and corrected the problem, caused by an inadvertent flipping of the wrong circuit breakers. Reentry took place without incident, the two drogue parachutes opened at 24,000 feet to slow and stabilize the spacecraft, followed by the three main parachutes at 10,000 feet to slow the descent until splashdown.

Splashdown of Skylab 4 The Skylab 4 Command Module in the apex down or Stable II position
Left: Splashdown of Skylab 4, ending the longest crewed mission to that time. Right: The Skylab 4 Command Module in the apex down or Stable II position.

Splashdown of Skylab 4 took place 176 miles from San Diego and three miles from the prime recovery ship the helicopter carrier U.S.S. New Orleans (LPH-11). The mission of 84 days 1 hour 16 minutes set a human spaceflight duration record for that time. Carr, Gibson, and Pogue had orbited the Earth 1,214 times and traveled 70.5 million miles. The CM first assumed a Stable II or apex down orientation in the water. Balloons at the top of the spacecraft inflated within minutes to right it to the Stable I or apex up position. In Mission Control at NASA’s Johnson Space Center (JSC) in Houston, flight controllers met the splashdown with mixed feelings – elation at the conclusion of the longest and highly successful mission and sadness at the end of the Skylab program with an upcoming prolonged hiatus in human spaceflights until the Apollo-Soyuz Test Project in July 1975. The three major television networks chose not to carry the splashdown live, the first American splashdown not covered live since the capability began with the Gemini VI mission in 1965. The networks deemed the event not newsworthy.

Mission Control at the NASA Johnson Space Center in Houston shortly after the Skylab 4 splashdown
Mission Control at the NASA Johnson Space Center in Houston shortly after the Skylab 4 splashdown.

Recovery helicopter from the U.S.S. New Orleans about to drop swimmers into the water Swimmers attach an inflatable collar around the Skylab 4 Command Module (CM) Sailors lift the CM onto an elevator deck on the New Orleans
Left: Recovery helicopter from the U.S.S. New Orleans about to drop swimmers into the water. Middle: Swimmers attach an inflatable collar around the Skylab 4 Command Module (CM). Right: Sailors lift the CM onto an elevator deck on the New Orleans.

Within 40 minutes of splashdown, recovery teams had placed an inflatable collar around the spacecraft and lifted it aboard the New Orleans. Seven minutes later, they had the hatch open and flight surgeons quickly examined the three astronauts, declaring them to be healthy.

Edward G. Gibson emerges first from the Skylab 4 Command Module (CM) William R. Pogue stands after emerging from the Command Module Skylab 4 crew members Gibson, left, Pogue, and Gerald P. Carr seated on a forklift platform after emerging from the CM and on their way to the medical facility
Left: Aboard the U.S.S. New Orleans, Edward G. Gibson emerges first from the Skylab 4 Command Module (CM). Middle: William R. Pogue stands after emerging from the CM. Right: Skylab 4 crew members Gibson, left, Pogue, and Gerald P. Carr seated on a forklift platform after emerging from the CM and on their way to the medical facility.

Gibson, riding in the spacecraft’s center seat, emerged first, followed by Pogue. Carr exited last, befitting his role as commander. They walked the few steps to a platform where they could sit and wave to the cheering sailors. A forklift picked up the entire platform with the astronauts, and transported them to the Skylab mobile medical facilities aboard the carrier. Extensive medical examinations of the astronauts continued throughout landing day while the carrier sailed toward San Diego.

Skylab 4 Commander Gerald P. Carr enjoys a cup of coffee during medical testing aboard the U.S.S. New Orleans Skylab 4 astronauts mingle with some of the crew aboard the New Orleans
Left: Skylab 4 Commander Gerald P. Carr enjoys a cup of coffee during medical testing aboard the U.S.S. New Orleans. Right: During a break from medial testing, the Skylab 4 astronauts mingle with some of the crew aboard the New Orleans.

Medical exams revealed Carr, Gibson, and Pogue to have withstood the rigors of weightlessness better than the previous two Skylab crews despite having spent more time in space. They attributed this to their increased exercise regimen, including the use of the Thornton treadmill, and better nutrition, an assertion backed up by flight surgeons and scientists. While on board ship, they had limited contact with the staff, all of whom wore protective masks when in close proximity to the crew to maintain the strict postflight medical quarantine.

From aboard the U.S.S. New Orleans, Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue wave to the crowd assembled dockside at North Island Naval Air Station (NAS) in San Diego Carr, top, Gibson, and Pogue board a U.S. Air Force transport jet at North Island NAS that flew them to Houston Carr, Gibson, and Pogue aboard the transport jet on their way to Houston
Left: From aboard the U.S.S. New Orleans, Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue wave to the crowd assembled dockside at North Island Naval Air Station (NAS) in San Diego. Middle: Carr, top, Gibson, and Pogue board a U.S. Air Force transport jet at North Island NAS that flew them to Houston. Right: Carr, Gibson, and Pogue aboard the transport jet on their way to Houston.

Carr, Gibson, and Pogue remained aboard the New Orleans until completion of the landing plus 2-day medical exams. The ship had arrived at North Island Naval Air Station in San Diego the morning of Feb. 9, and the astronauts participated in a dockside welcoming ceremony while remaining on the carrier. The next day, the trio left the carrier and boarded a U.S. Air Force transport jet that flew them to Ellington Air Force Base in Houston.

Skylab 4 astronauts Gerald P. Carr, bottom, Edward G. Gibson, and William R. Pogue descend the steps from the U.S. Air Force jet that had flown them from San Diego Pogue, left, Gibson, and Carr hug their wives for the first time in more than three months On the podium at Ellington, Carr, left, Gibson, and Pogue address the welcoming crowd
Left: At Ellington Air Force Base in Houston, Skylab 4 astronauts Gerald P. Carr, bottom, Edward G. Gibson, and William R. Pogue descend the steps from the U.S. Air Force jet that had flown them from San Diego. Middle: Pogue, left, Gibson, and Carr hug their wives for the first time in more than three months. Right: On the podium at Ellington, Carr, left, Gibson, and Pogue address the welcoming crowd.

Upon deplaning at Ellington, Carr, Gibson, and Pogue reunited with their wives, JoAnn, Julia, and Helen, respectively, whom they had not seen in three months. Director of JSC Christopher C. Kraft introduced them to the several hundred well-wishers who turned out to welcome the astronauts back to Houston.

Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue address reporters at their postflight press conference on Feb. 22 President Richard M. Nixon speaks to the assembled crowd at NASA’s Johnson Space Center in Houston during the ceremony where he presented the Skylab 4 astronauts In April 1974, the Skylab 4 astronauts address the assembled employees in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida
Left: Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue address reporters at their postflight press conference on Feb. 22. Middle: President Richard M. Nixon speaks to the assembled crowd at NASA’s Johnson Space Center in Houston during the ceremony where he presented the Skylab 4 astronauts, sitting on the podium with their wives, with the Distinguished Service Medal on March 20, 1974. Right: In April 1974, the Skylab 4 astronauts address the assembled employees in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.

The astronauts soon returned to work at JSC for a series of debriefings about their mission. During a press conference on Feb. 22, they showed a film of their experiences aboard Skylab and answered reporters’ questions. During a visit to Texas, on March 20, President Richard M. Nixon stopped at JSC to award Carr, Gibson, and Pogue the Distinguished Service Medal in a ceremony attended by thousands of employees and visitors.

The Skylab 4 Command Module on display at the Oklahoma History Center in Oklahoma City The Crew-1 astronauts aboard the space station talk with Skylab-4 astronaut Edward G. Gibson
Left: The Skylab 4 Command Module on display at the Oklahoma History Center in Oklahoma City. Image credit: courtesy Oklahoma History Center. Right: The Crew-1 astronauts aboard the space station talk with Skylab-4 astronaut Edward G. Gibson.

Following splashdown, the U.S.S. New Orleans delivered the CM to San Diego, from where workers trucked it to its manufacturer, the Rockwell International facility in Downey, California, for postflight inspection. NASA transferred the Skylab 4 CM to the National Air and Space Museum in 1975, where it went on display the following year when the Smithsonian Institution inaugurated its new building. After more than 40 years (1976 to 2018) on display there, in 2020, the NASM loaned the spacecraft to the Oklahoma History Center in Oklahoma City. The Skylab 4 CM held the record for the longest single flight for an American spacecraft for 47 years until Feb. 7, 2021, when the Crew Dragon Resilience flying the SpaceX Crew-1 mission to the International Space Station broke it. To commemorate the event, the four-person crew of Crew-1 held a video conference with Gibson from the space station.

The Skylab 4 rescue vehicle returns to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida on Feb. 14, 1974 Workers in the VAB destack the Skylab rescue spacecraft Command and Service Module-119 (CSM-119) from the SA-209 Saturn IB rocket The Skylab 4 CSM-119 rescue spacecraft on display in the KSC Apollo/Saturn V Center
Left: The Skylab 4 rescue vehicle returns to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida on Feb. 14, 1974. Middle: Workers in the VAB destack the Skylab rescue spacecraft Command and Service Module-119 (CSM-119) from the SA-209 Saturn IB rocket. Right: The Skylab 4 CSM-119 rescue spacecraft on display in the KSC Apollo/Saturn V Center.

The Skylab 4 SA-209 Saturn IB rocket on display at the Visitor Center’s Rocket Garden at NASA’s Kennedy Space Center in Florida
The Skylab 4 SA-209 Saturn IB rocket on display at the Visitor Center’s Rocket Garden at NASA’s Kennedy Space Center in Florida. The rocket is topped with the Facility Verification Vehicle Apollo Command and Service Module.

The Skylab Rescue Vehicle’s rocket (SA-209) and spacecraft (CSM-119), on Launch Pad 39B since Dec. 3, 1973, returned to the Vehicle Assembly Building on Feb. 14, 1974. Workers destacked the vehicle, keeping the components in storage at KSC. Managers designated SA-209 and CSM-119 as the backup vehicle for the July 1975 Apollo-Soyuz Test Project. Engineers used the spacecraft to conduct lightning sensitivity testing in KSC’s Manned Spacecraft Operations Building’s high bay in September 1974. Following ASTP, NASA retired both the rocket and spacecraft, eventually putting them on display. Visitors can view the SA-209 Saturn IB in the Rocket Garden of KSC’s Visitor Center and the CSM-119 in the Apollo/Saturn V Center at KSC.

Illustration of a possible Skylab reboost mission by a space shuttle Track of Skylab’s reentry over Australia Managers, flight directors, and astronauts monitor Skylab’s reentry from Mission Control at NASA’s Johnson Space Center in Houston
Left: Illustration of a possible Skylab reboost mission by a space shuttle. Middle: Track of Skylab’s reentry over Australia. Right: Managers, flight directors, and astronauts monitor Skylab’s reentry from Mission Control at NASA’s Johnson Space Center in Houston.

Two days before leaving Skylab, the Skylab 4 crew boosted the station into a higher 269-by-283-mile orbit, assuming it would remain in space until 1983. By then, NASA hoped that space shuttle astronauts could attach a rocket to the station to either boost it to a higher orbit or safely deorbit it over the Pacific Ocean. But delays in the shuttle program and higher than expected solar activity resulting in increased atmospheric drag on the station ultimately thwarted those plans. It became apparent that Skylab would reenter in mid-1979, forcing NASA to devise plans to control its entry point as much as possible by adjusting the station’s attitude to influence atmospheric drag. On July 11, 1979, during its 34,981st orbit around the Earth, engineers in JSC’s Mission Control sent the final command to Skylab to turn off its control moment gyros, sending it into a slow tumble in an effort to ensure that Skylab would not reenter over a populated area. Skylab’s breakup resulted in most of the debris that survived reentry falling into the Indian Ocean, with some pieces falling over sparsely populated areas of southern Western Australia. 

The Skylab postage stamp issued by the U.S. Postal Service Skylab 2 Commander Charles “Pete” Conrad, center, accepts the Collier Trophy from Vice President Gerald R. Ford, right, as Skylab 4 Commander Gerald P. Carr, left, and Skylab 3 Commander Alan L. Bean look on
Left: The Skylab postage stamp issued by the U.S. Postal Service. Image credit: courtesy Smithsonian National Postal Museum. Right: Skylab 2 Commander Charles “Pete” Conrad, center, accepts the Collier Trophy from Vice President Gerald R. Ford, right, as Skylab 4 Commander Gerald P. Carr, left, and Skylab 3 Commander Alan L. Bean look on.

The scientific results returned during the 171 days of human occupancy aboard Skylab remain some of the most significant in the history of spaceflight. The medical studies on the astronauts represent the first comprehensive look at the human body’s response to long-duration spaceflight. The ATM solar telescopes took more than 170,000 images for astronomers, while Earth scientists received 46,000 photographs. The Skylab program received many accolades. The U.S. Postal Service honored it by releasing a stamp in the program’s honor on May 14, 1974, the 1-year anniversary of Skylab’s launch. The National Aviation Association awarded its prestigious Robert J. Collier Trophy to the nine Skylab astronauts and to Skylab Program Director William C. Schneider for “proving beyond question the value of man in future explorations of space and the production of data of benefit to all the people on Earth.” Vice President Gerald R. Ford presented the award on June 4, 1974.

The Skylab backup flight unit on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C The Skylab trainer on display at Space Center Houston
Left: The Skylab backup flight unit on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C. Image credit: courtesy NASM. Right: The Skylab trainer on display at Space Center Houston.

Possible plans for launching the Skylab backup flight unit never materialized due to budget constraints. That unit is on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C. The training units of the various Skylab modules are on display at Space Center Houston, JSC’s official visitors center.

Soviet cosmonauts Georgi M. Grechko, left, and Yuri V. Romanenko during their record-breaking 96-day mission aboard Salyut 6 NASA astronaut Norman E. Thagard during his American record-breaking 115-day flight aboard Mir
Left: Soviet cosmonauts Georgi M. Grechko, left, and Yuri V. Romanenko during their record-breaking 96-day mission aboard Salyut 6. Right: NASA astronaut Norman E. Thagard during his American record-breaking 115-day flight aboard Mir.

As for the record for longest spaceflight, Skylab 4’s 84-day mark held for four years, when Soviet cosmonauts Yuri V. Romanenko and Georgi M. Grechko surpassed it, spending 96 days aboard the Salyut 6 space station from December 1977 to March 1978. As an American record it held up longer, broken by NASA astronaut Norman E. Thagard during his 115-day flight aboard the Russian space station Mir between March and July 1995. Operational lessons learned from Skylab proved invaluable for the Shuttle-Mir and International Space Station programs.

For more insight into the Skylab 4 mission, read Carr’s, Gibson’s, and Pogue’s oral histories with the JSC History Office.

With special thanks to Ed Hengeveld for his expert contributions on Skylab imagery.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By NASA
      NASA astronaut Nichole Ayers conducts research operations inside the Destiny laboratory module’s Microgravity Science Glovebox aboard the International Space Station.Credit: NASA Students attending the U.S. Space and Rocket Center Space Camp in Huntsville, Alabama, will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions.
      At 12:40 p.m. EDT on Tuesday, July 1, NASA astronauts Anne McClain, Jonny Kim, and Nichole Ayers will answer student questions. Ayers is a space camp alumna.
      Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
      The U.S. Space and Rocket Center will host the downlink while celebrating the 65th anniversary of NASA’s Marshall Space Flight Center. This event is open to the public.
      Media interested in covering the event must RSVP by 5 p.m., Friday, June 27, to Pat Ammons at: 256-721-5429 or pat.ammons@spacecamp.com.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By European Space Agency
      ESA Delivers: 50 years booklet
      50 hallmark achievements across 50 years
      View the full article
    • By NASA
      NASA astronauts (left to right) Anne McClain and Nichole Ayers pose for a portrait together aboard the International Space Station. Moments earlier, Ayers finished trimming McClain’s hair using an electric razor with a suction hose attached that collects the loose hair to protect the station’s atmosphere.NASA Students from New York and Utah will hear from NASA astronauts aboard the International Space Station as they answer prerecorded questions in two separate events.
      At 11:30 a.m. EDT on Monday, June 23, NASA astronauts Nichole Ayers and Anne McClain will answer questions submitted by students from P.S. 71 Forest Elementary School in Ridgewood, New York. Media interested in covering the event must RSVP by 5 p.m. Friday, June 20, to Regina Beshay at: rbeshay2@school.nyc.gov or 347-740-6165.
      At 11:05 a.m. on Friday, June 27, Ayers and McClain will answer questions submitted by students from Douglas Space and Science Foundation, Inc., in Layton, Utah. Media interested in covering the event must RSVP by 5 p.m. Wednesday, June 25, to Sarah Merrill at: sarahmonique@gmail.com or 805-743-3341.
      Watch the 20-minute Earth-to-space calls on NASA STEM YouTube Channel.
      P.S. 71 Forest Elementary School will host kindergarten through fifth grade students. Douglas Space and Science Foundation will host participants from the Science, Technology, Achievement Research camp. Both events aim to inspire students to imagine a future in science, technology, engineering, and mathematics careers through ongoing collaborations, mentorship, and hands-on learning experiences.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Marshall Space Flight Center invites the community to help celebrate the center’s 65th anniversary during a free public event noon to 5 p.m. CDT Saturday, July 19, at The Orion Amphitheater in Huntsville, Alabama.
      NASA Marshall, along with its partners and collaborators, will fill the amphitheater with space exhibits, music, food vendors, and hands-on activities for all ages. The summer celebration will mark 65 years of innovation and exploration, not only for Marshall, but for Huntsville and other North Alabama communities.
      “Our success has been enabled by the continuous support we receive from Huntsville and the North Alabama communities, and this is an opportunity to thank community members and share some of our exciting mission activities,” Joseph Pelfrey, director of NASA Marshall, said.
      Some NASA astronauts from Expedition 72 who recently returned from missions aboard the ISS (International Space Station) will participate in the celebratory event.  The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the space station and crew members in attendance will share their experiences in space.
      The official portrait of the International Space Station’s Expedition 72 crew. At the top (from left) are Roscosmos cosmonaut and Flight Engineer Alexey Ovchinin, NASA astronaut and space station Commander Suni Williams, and NASA astronaut and Flight Engineer Butch Wilmore. In the middle row are Roscosmos cosmonaut and Flight Engineer Ivan Vagner and NASA astronaut and Flight Engineer Don Pettit. In the bottom row are Roscosmos cosmonaut and Flight Engineer Aleksandr Gorbunov and NASA astronaut and Flight Engineer Nick Hague. NASA/Bill Stafford and Robert Markowitz “Every day, our Marshall team works to advance human spaceflight and discovery, such as working with our astronauts on the space station.” Pelfrey said. “We are honored Expedition 72 crew members will join us to help commemorate our 65-year celebration.”
      The anniversary event will also include remarks from Pelfrey, other special presentations, and fun for the whole family.
      Learn more about this free community event at:
      https://www.nasa.gov/marshall65
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala. 
      256-640-9065 
      lance.d.davis@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 2 hours ago 4 min read NASA Celebrates Employees Selected for Top Federal Award
      Article 23 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...