Jump to content

Nuevos astronautas de Artemis se gradúan y la NASA hará la cobertura


Recommended Posts

  • Publishers
Posted
ascan-2021.jpg?w=2048
La promoción de candidatos a astronautas de la NASA, fotografiada durante un acto cerca del Centro Espacial Johnson de la NASA en Houston el 7 de diciembre de 2021.
Créditos: NASA/James Blair

Read this release in English here.

La NASA rendirá homenaje a la nueva generación de candidatos a astronautas para el programa Artemis durante su acto de graduación, a las 10:30 a.m. hora del este del miércoles 5 de marzo en el Centro Espacial Johnson de la agencia en Houston.

Después de completar más de dos años de capacitación básica, estos candidatos recibirán sus “alas” y serán elegibles para vuelos espaciales, incluyendo asignaciones a la Estación Espacial Internacional, futuros destinos comerciales y misiones a la Luna y, más adelante, misiones a Marte.

La promoción de estudiantes que comenzaron sus estudios en 2021 incluye a 10 candidatos de la NASA, así como a dos candidatos de los Emiratos Árabes Unidos (EAU) del Centro Espacial Mohammed Bin Rashid, quienes han estado entrenando junto a los candidatos de la NASA.

Después de la ceremonia, a las 11:45 a.m. hora del este, la NASA tendrá una sesión de preguntas y respuestas con los estudiantes y los medios de comunicación presentes. Quienes sigan la sesión en las redes sociales pueden hacer preguntas usando la etiqueta #AskNASA. Los recién graduados también estarán disponibles para entrevistas con los medios de comunicación en persona y de manera remota.

Tanto la ceremonia como la sesión de preguntas y respuestas serán transmitidas en vivo por NASA+, NASA Television y el sitio web de la agencia. Aprende en este enlace (en inglés) cómo puedes ver la transmisión de NASA TV a través de diferentes plataformas, incluidas las redes sociales.

Los periodistas no estadounidenses que quieran participar de forma presencial deberán solicitar sus credenciales antes de las 5 p.m. hora de la zona central (CT) del miércoles 21 de febrero a la sala de redacción del Centro Espacial Johnson, llamando al teléfono +1 281-483-5111 o enviando un correo electrónico a jsccommu@mail.nasa.gov. Los periodistas estadounidenses que deseen participar en persona deben solicitar sus credenciales comunicándose con la sala de redacción del centro Johnson antes de las 5 p.m. CT del jueves 29 de febrero. Todos los medios interesados en obtener una entrevista en persona o en forma remota con los astronautas deberán solicitar sus credenciales antes de las 5 p.m. CT del 29 de febrero, comunicándose con la sala de redacción del centro Johnson.

Los candidatos a astronauta de la NASA son:

Nichole Ayers, mayor de la Fuerza Aérea de Estados Unidos, es nativa de Colorado y se graduó en el año 2011 de la Academia de la Fuerza Aérea de Estados Unidos en Colorado Springs, Colorado, con una licenciatura en matemáticas y una especialización en ruso. Más tarde obtuvo una maestría en matemáticas computacionales y aplicadas de la Universidad Rice en Houston. Ayers tiene más de 200 horas de combate y más de 1.400 horas de tiempo total de vuelo en el T-38 y en el avión de combate F-22 Raptor. Ayers, una de las pocas mujeres que ha pilotado el F-22, lideró en 2019 la primera formación de este avión compuesta exclusivamente por mujeres en combate.

Marcos Berríos, mayor de la Fuerza Aérea de Estados Unidos, creció en Guaynabo, Puerto Rico. Berríos trabajó como ingeniero aeroespacial para la Dirección de Desarrollo de la Aviación del Ejército de Estados Unidos en el aeródromo federal de Moffett en California y como piloto de helicópteros de búsqueda y rescate de combate para la Guardia Nacional Aérea de California. Es piloto de pruebas y tiene una licenciatura en ingeniería mecánica del Instituto de Tecnología de Massachusetts en Cambridge, Massachusetts, y una maestría en ingeniería mecánica, así como un doctorado en aeronáutica y astronáutica de la Universidad de Stanford en Palo Alto, California. Berríos ha acumulado más de 110 misiones de combate y 1.400 horas de vuelo en más de 21 aeronaves diferentes.

Chris (Christina) Birch creció en Gilbert, Arizona, y se graduó de la Universidad de Arizona en Tucson, con títulos en matemáticas y bioquímica y biofísica molecular. Después de obtener un doctorado en ingeniería biológica del Instituto de Tecnología de Massachusetts, dio clases de bioingeniería en la Universidad de California en Riverside, y de escritura y comunicación científicas en el Instituto de Tecnología de California en Pasadena. Posteriormente, dejó la academia para convertirse en ciclista de pista en el equipo de la selección nacional de Estados Unidos.

Deniz Burnham considera a Wasilla, Alaska, su hogar. Expasante en el Centro de Investigación Ames de la NASA en Silicon Valley, California, obtuvo una licenciatura en ingeniería química de la Universidad de California en San Diego y una maestría en ingeniería mecánica de la Universidad del Sur de California en Los Ángeles. Burnham es una líder con experiencia en la industria de la energía, y ha gestionado proyectos de perforación en plataformas petroleras durante más de una década, incluyendo el Ártico en Alaska, el norte de Alberta en Canadá y Texas. Burnham sirvió en la Reserva de la Marina de Estados Unidos como oficial del servicio de ingeniería. Es piloto privada licenciada con las siguientes calificaciones: avión monomotor de tierra y mar, avión de instrumentos y helicóptero-rotor.

Luke Delaney, mayor retirado del Cuerpo de Marines de Estados Unidos, creció en Debary, Florida. Tiene una licenciatura en ingeniería mecánica de la Universidad del Norte de Florida en Jacksonville, y una maestría en ingeniería aeroespacial de la Escuela Naval de Postgrado en Monterey, California. Delaney es un aviador naval que ha participado en ejercicios en toda la región del Pacífico asiático y realizó misiones de combate en apoyo de la Operación Libertad Duradera. Como piloto de pruebas, efectuó vuelos de evaluación de integración de sistemas de armas y se desempeñó como instructor. Delaney trabajó recientemente como piloto de investigación en el Centro de Investigación Langley de la NASA en Hampton, Virginia, donde apoyó misiones científicas aéreas. Incluyendo su carrera en la NASA, Delaney ha registrado más de 3.900 horas de vuelo en 48 modelos de aviones a reacción, de hélice y de ala giratoria.

Andre Douglas es nativo de Virginia. Obtuvo una licenciatura en ingeniería mecánica de la Academia de la Guardia Costera de Estados Unidos, una maestría en ingeniería mecánica y en arquitectura naval e ingeniería marina de la Universidad de Michigan en Ann Arbor, una maestría en ingeniería eléctrica e informática de la Universidad Johns Hopkins en Baltimore y un doctorado en ingeniería de sistemas de la Universidad George Washington en Washington. Douglas sirvió en la Guardia Costera de Estados Unidos como arquitecto naval, ingeniero de salvamento, asistente de control de daños y oficial de cubierta. Recientemente fue miembro sénior del personal del Laboratorio de Física Aplicada de la Universidad Johns Hopkins en Laurel, Maryland, trabajando en robótica marítima, defensa planetaria y misiones de exploración espacial para la NASA.

Jack Hathaway, comandante de la Marina de Estados Unidos, es oriundo de Connecticut. Obtuvo licenciaturas en física e historia de la Academia Naval de Estados Unidos y completó sus estudios de posgrado en la Universidad de Cranfield en Inglaterra y en la Escuela Profesional de Guerra Naval de Estados Unidos. Como aviador naval, Hathaway voló y fue desplegado con el Escuadrón de Caza y Ataque 14 de la Marina a bordo del USS Nimitz y el Escuadrón de Caza y Ataque 136 a bordo del USS Truman. Se graduó de la Escuela de Pilotos de Prueba del Imperio en Wiltshire, Inglaterra, apoyó al Estado Mayor Conjunto en el Pentágono y, más recientemente, fue asignado como futuro oficial ejecutivo del Escuadrón de Caza y Ataque 81. Tiene más de 2.500 horas de vuelo en 30 tipos de aeronaves, más de 500 aterrizajes en portaaviones y ha volado en 39 misiones de combate.

Anil Menon, teniente coronel de la Fuerza Aérea de Estados Unidos, nació y creció en Minneapolis. Fue el primer médico de la tripulación de vuelo de SpaceX, ayudando a llevar al espacio a los primeros seres humanos que viajaron con esta empresa, durante la misión Demo-2 de SpaceX para la NASA, y desarrollando una organización médica para apoyar a los sistemas humanos durante futuras misiones. Antes de eso, sirvió en la NASA como médico de la tripulación de vuelo para diferentes expediciones de transporte de astronautas a la Estación Espacial Internacional. Menon es un médico especializado en medicina de emergencia en ejercicio activo con formación en medicina rural y aeroespacial. Como médico, fue socorrista durante el terremoto de 2010 en Haití, el terremoto de 2015 en Nepal y el accidente del Salón Aeronáutico de Reno de 2011. En la Fuerza Aérea, Menon apoyó a la 45.a Ala Espacial como médico de la tripulación de vuelo y a la 173.a Ala de Combate, donde realizó más de 100 salidas en el avión de combate F-15 y transportó a más de 100 pacientes como parte del equipo de transporte aéreo de cuidados críticos.

Christopher Williams creció en Potomac, Maryland. Se graduó de la Universidad de Stanford con una licenciatura en física y obtuvo un doctorado en física del Instituto de Tecnología de Massachusetts, donde dedicó sus investigaciones a la astrofísica. Williams es físico médico certificado, y completó su formación como residente en la Escuela de Medicina de Harvard en Boston, antes de unirse al cuerpo docente como físico clínico e investigador. Recientemente trabajó como físico médico en el Departamento de Oncología Radioterápica en el hospital Brigham and Women’s y en el Instituto de Investigación contra el Cáncer Dana-Farber en Boston. Fue el físico principal del programa de radioterapia adaptativa guiada por resonancia magnética de ese instituto. Su investigación se centró en el desarrollo de técnicas de orientación por imagen para tratamientos contra el cáncer.

Jessica Wittner, teniente comandante de la Marina de Estados Unidos, es originaria de California y cuenta con una distinguida carrera en servicio activo como aviadora naval y piloto de pruebas. Tiene una licenciatura en ingeniería aeroespacial de la Universidad de Arizona en Tucson y una maestría en ingeniería aeroespacial de la Escuela Naval de Postgrado de Estados Unidos. Wittner fue comisionada como oficial naval mediante un programa de preparación para reclutas y ha servido operativamente volando aviones de combate F/A-18 con el Escuadrón de Caza y Ataque 34 en Virginia Beach, Virginia, y el Escuadrón de Caza y Ataque 151 en Lemoore, California. Graduada de la Escuela de Pilotos de Pruebas Navales de Estados Unidos, también trabajó como piloto de pruebas y oficial de proyectos con el Escuadrón de Pruebas y Evaluación Aérea 31 en China Lake, California.

Los candidatos a astronauta de los Emiratos Árabes Unidos son:

Nora AlMatrooshi, nacida en Sharjah, la primera mujer astronauta emiratí y árabe, fue seleccionada en el segundo grupo de candidatos a astronauta de los EAU y forma parte de la promoción de candidatos a astronautas de la NASA de 2021 que reciben su formación en Estados Unidos. AlMatrooshi tiene una licenciatura en ingeniería mecánica de la Universidad de los Emiratos Árabes Unidos y completó un semestre en la Universidad de Ciencias Aplicadas de Vaasa en Finlandia. Es miembro de la Sociedad Estadounidense de Ingenieros Mecánicos y anteriormente trabajó como ingeniera de tuberías en la National Petroleum Construction Co. Durante su trabajo allí, contribuyó a importantes proyectos de ingeniería para las empresas Abu Dhabi National Oil Co. y Saudi Aramco, y se desempeñó como especialista técnica. También fue vicepresidenta del Consejo Juvenil de la Empresa Nacional de Construcción Petrolera durante tres años.

Mohammed AlMulla, nacido en Dubai, también fue seleccionado en el segundo grupo de candidatos a astronauta de los EAU y forma parte de la promoción de candidatos a astronauta de la NASA de 2021 que reciben su formación en Estados Unidos. A los 19 años, obtuvo una licencia de piloto comercial de la autoridad de seguridad de la aviación civil de Australia, lo que lo convirtió en el piloto más joven de la policía de Dubai. A los 28 años, estableció otro récord al convertirse en el instructor más joven de esta misma organización después de recibir su licencia de entrenador de pilotos. AlMulla obtuvo una licenciatura en derecho y economía en 2015 y una maestría ejecutiva en administración pública de la Escuela de Gobierno Mohammed Bin Rashid en 2021. Con más de 15 años de experiencia, también se desempeñó como jefe del Departamento de Capacitación del Centro del Ala Aérea de la Policía de Dubai.

Todos los candidatos a astronautas han completado su capacitación en caminatas espaciales, robótica, sistemas de estaciones espaciales, dominio del jet T-38 y el idioma ruso. En la ceremonia, cada candidato recibirá un pin de astronauta, lo que marcará su graduación de la capacitación básica y su elegibilidad para ser seleccionado para volar en el espacio.

La NASA continúa su trabajo a bordo de la estación espacial, el cual ha mantenido más de 23 años consecutivos de presencia humana. La agencia también permite el desarrollo de nuevas estaciones espaciales comerciales donde los integrantes de la tripulación continuarán realizando actividades científicas en beneficio de la exploración de la Tierra y el espacio profundo.

Como parte de la campaña Artemis de la NASA, la agencia establecerá las bases para la exploración científica a largo plazo en la Luna, pondrá en la superficie lunar a la primera mujer, a la primera persona no blanca y al primer astronauta de sus socios internacionales, y se preparará para las expediciones humanas a Marte en beneficio de todos.

Encuentra fotos adicionales de los candidatos a astronautas y más acerca de su formación aquí:

https://flic.kr/s/aHsmXdVHhc

-fin-

Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Bastion Technologies Inc. of Houston to provide safety and mission assurance services for the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      The Safety and Mission Assurance II (SMAS II) award is a performance-based, indefinite-delivery/indefinite-quantity contract with a maximum potential value of $400 million. A phase-in period begins Monday, followed by a base ordering period of four years with options to extend services through March 2034.
      Under the contract, Bastion will provide services for a wide range of activities including system safety, reliability, maintainability, software assurance, quality engineering and assurance, independent assessment, institutional safety, and pressure systems.
      The work will support various spaceflight and science missions, research and development projects, hardware fabrication and testing, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, and Stennis Space Center in Bay St. Louis, Mississippi. Tasks also will be performed at NASA’s Kennedy Space Center in Florida, contractor facilities, and other sites supported by Marshall’s Safety and Mission Assurance Directorate.
      The SMAS II contract is a small business set-aside, which levels the playing field for qualified small businesses to compete for and win federal contracts.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 15, 2025 LocationNASA Headquarters Related Terms
      Marshall Space Flight Center Kennedy Space Center Michoud Assembly Facility NASA Centers & Facilities Stennis Space Center View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Sept. 9, 2025, NASA’s Solar Dynamics Observatory captured this image of the Sun.NASA/GSFC/Solar Dynamics Observatory It looked like the Sun was heading toward a historic lull in activity. That trend flipped in 2008, according to new research.
      The Sun has become increasingly active since 2008, a new NASA study shows. Solar activity is known to fluctuate in cycles of 11 years, but there are longer-term variations that can last decades. Case in point: Since the 1980s, the amount of solar activity had been steadily decreasing all the way up to 2008, when solar activity was the weakest on record. At that point, scientists expected the Sun to be entering a period of historically low activity.
      But then the Sun reversed course and started to become increasingly active, as documented in the study, which appears in The Astrophysical Journal Letters. It’s a trend that researchers said could lead to an uptick in space weather events, such as solar storms, flares, and coronal mass ejections.
      “All signs were pointing to the Sun going into a prolonged phase of low activity,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California, lead author of the new study. “So it was a surprise to see that trend reversed. The Sun is slowly waking up.”
      The earliest recorded tracking of solar activity began in the early 1600s, when astronomers, including Galileo, counted sunspots and documented their changes. Sunspots are cooler, darker regions on the Sun’s surface that are produced by a concentration of magnetic field lines. Areas with sunspots are often associated with higher solar activity, such as solar flares, which are intense bursts of radiation, and coronal mass ejections, which are huge bubbles of plasma that erupt from the Sun’s surface and streak across the solar system.
      NASA scientists track these space weather events because they can affect spacecraft, astronauts’ safety, radio communications, GPS, and even power grids on Earth. Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign, as understanding the space environment is a vital part of mitigating astronaut exposure to space radiation.
      Launching no earlier than Sept. 23, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory missions, as well as the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On-Lagrange 1) mission, will provide new space weather research and observations that will help to drive future efforts at the Moon, Mars, and beyond.
      Solar activity affects the magnetic fields of planets throughout the solar system. As the solar wind — a stream of charged particles flowing from the Sun — and other solar activity increase, the Sun’s influence expands and compresses magnetospheres, which serve as protective bubbles of planets with magnetic cores and magnetic fields, including Earth. These protective bubbles are important for shielding planets from the jets of plasma that stream out from the Sun in the solar wind.
      Over the centuries that people have been studying solar activity, the quietest times were a three-decade stretch from 1645 to 1715 and a four-decade stretch from 1790 to 1830. “We don’t really know why the Sun went through a 40-year minimum starting in 1790,” Jasinski said. “The longer-term trends are a lot less predictable and are something we don’t completely understand yet.”
      In the two-and-a-half decades leading up to 2008, sunspots and the solar wind decreased so much that researchers expected the “deep solar minimum” of 2008 to mark the start of a new historic low-activity time in the Sun’s recent history.
      “But then the trend of declining solar wind ended, and since then plasma and magnetic field parameters have steadily been increasing,” said Jasinski, who led the analysis of heliospheric data publicly available in a platform called OMNIWeb Plus, run by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The data Jasinski and colleagues mined for the study came from a broad collection of NASA missions. Two primary sources — ACE (Advanced Composition Explorer) and the Wind mission — launched in the 1990s and have been providing data on solar activity like plasma and energetic particles flowing from the Sun toward Earth. The spacecraft belong to a fleet of NASA Heliophysics Division missions designed to study the Sun’s influence on space, Earth, and other planets.
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Abbey Interrante
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / abbey.a.interrante@nasa.gov
      2025-118
      Share
      Details
      Last Updated Sep 15, 2025 Related Terms
      Heliophysics Jet Propulsion Laboratory The Solar System Explore More
      3 min read Weird Ways to Observe the Moon
      International Observe the Moon Night is on October 4, 2025, this year– but you can observe…
      Article 8 hours ago 5 min read NASA’s GUARDIAN Tsunami Detection Tech Catches Wave in Real Time
      Article 3 days ago 5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
    • By NASA
      NASA/Michael DeMocker NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) prepare to fly out to a landing zone in the Rocky Mountains as part of the certification run for the NASA Artemis course on Aug. 26, 2025. The mountains in northern Colorado offer similar visual illusions and flight environments to the Moon.
      The newly certified lander flight training course marks a key milestone in crew training for Artemis missions to the Moon. Through Artemis, NASA will explore the lunar South Pole, paving the way for human exploration farther into the solar system, including Mars.
      Learn more about the training course.
      Image credit: NASA/Michael DeMocker
      View the full article
    • By NASA
      5 min read
      Avatars for Astronaut Health to Fly on NASA’s Artemis II
      An organ chip for conducting bone marrow experiments in space. Emulate NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.
      The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 
      AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”
      Nicky Fox
      Associate Administrator, NASA Science Mission Directorate
      “AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”
      The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.
      Organ-on-a-chip: mimic for human health
      Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 
      Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.
      Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.
      Bone marrow as bellwether
      The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.
      Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.
      Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.
      To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.
      Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.
      Passenger for research
      “For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”
      During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.
      For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”
      Lisa Carnell
      Director of NASA’s Biological and Physical Sciences Division
      Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.
      Keep Exploring BPS Scientific Goals
      Goals



      Precision Health



      AVATAR



      Quantum Leaps


      Biological & Physical Sciences Division (BPS)

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
  • Check out these Videos

×
×
  • Create New...