Jump to content

40 Years Ago: STS-41B, the First Flight of the Manned Maneuvering Unit


Recommended Posts

  • Publishers
Posted

On Feb. 3, 1984, space shuttle Challenger took off on its fourth flight, STS-41B. Its five-person crew of Commander Vance D. Brand, Pilot Robert L. “Hoot” Gibson, and Mission Specialists Ronald E. McNair, Robert L. Stewart, and Bruce McCandless flew an eight-day mission ending with the first return to NASA’s Kennedy Space Center (KSC) in Florida. Many of the flight activities practiced tasks required for the upcoming Solar Maximum Mission satellite retrieval and repair mission. Among these, successful test flights of the Manned Maneuvering Unit (MMU) astronaut propulsion device during two untethered spacewalks proved the most critical, and visually spectacular. The two commercial communications satellites, Westar VI and Palapa-B2, successfully deployed during the mission ended up in non-operational orbits due to upper stage failures.

The STS-41B crew of Commander Vance D. Brand, Mission Specialists Robert L. Stewart, Ronald E. McNair, and Bruce McCandless, and Pilot Robert L. “Hoot” Gibson The STS-41B crew patch Challenger’s payload bay for STS-41B
Left: The STS-41B crew of (clockwise from bottom left) Commander Vance D. Brand, Mission Specialists Robert L. Stewart, Ronald E. McNair, and Bruce McCandless, and Pilot Robert L. “Hoot” Gibson. Middle: The STS-41B crew patch. Right: Challenger’s payload bay for STS-41B.

On Feb. 4, 1983, NASA announced Brand, Gibson, McNair, Stewart, and McCandless as the STS-11 crew. Brand, the flight’s only veteran, had flown on the Apollo-Soyuz Test Project in 1975 and commanded STS-5 in 1982. For the other four, STS-41B represented their first trip into space, although McCandless had served as an astronaut since his selection in 1966. He helped to develop the MMU and as a backup crew member for the Skylab 2 mission in 1973, he helped train astronauts to fly the Astronaut Maneuvering Unit, the MMU’s predecessor, inside Skylab. Gibson, McNair, and Stewart joined NASA as astronauts in 1978. At the time of the crew announcement, the seven-day mission’s objectives included the Large Format Camera for Earth photography, deploying the Palapa-B2 communications satellite for Indonesia, and the Payload Deployment and Retrieval System (PDRS) to test the Canadian-built Remote Manipulator System (RMS), or robotic arm. Over the course of the next year, both the mission’s designation and its payload complement changed due to a shuffling of payloads among shuttle flights. The PDRS moved up to STS-8, replaced by the Westar VI communications satellite for Western Union. In addition to the two spacewalks by McCandless and Stewart to test the MMU, the mission, re-designated STS-41B in September 1983, now included the Shuttle Pallet Satellite-01A (SPAS-01A), a reflight of the German-built deployable satellite flown on STS-7 in June 1983. The mission also included practicing rendezvous maneuvers with the Integrated Rendezvous Target (IRT), an inflatable 6-foot balloon deployed from the payload bay. During their spacewalks, McCandless and Stewart planned to perform the first tests of the Manipulator Foot Restraint (MFR), a work platform attached to the end of the RMS.

Aerial view at NASA’s Kennedy Space Center (KSC) in Florida of the Vehicle Assembly Building (VAB) and the Shuttle Landing Facility, where STS-41B made the first landing of the program Workers in the VAB prepare to lift space shuttle Challenger to mate it with its External Tank and twin Solid Rocket Boosters The STS-41B crew arrives at KSC three days before launch
Left: Aerial view at NASA’s Kennedy Space Center (KSC) in Florida of the Vehicle Assembly Building (VAB) and the Shuttle Landing Facility, where STS-41B made the first landing of the program. Middle: Workers in the VAB prepare to lift space shuttle Challenger to mate it with its External Tank and twin Solid Rocket Boosters. Right: The STS-41B crew arrives at KSC three days before launch.

After its previous mission, STS-8, Challenger arrived at KSC on Sept. 9, 1983, and workers towed it to the Orbiter Processing Facility to refurbish it for STS-41B. They replaced the orbiter’s three Auxiliary Power Units following a fire during Columbia’s landing on STS-9. They towed Challenger to the Vehicle Assembly Building on Jan. 6, 1984, for mating with its External Tank and twin Solid Rocket Boosters, and rolled the completed stack to Launch Pad 39A six days later. The astronauts participated in the Terminal Countdown Demonstration Test, a dress rehearsal for the actual countdown, on Jan. 16, and senior managers held the Flight Readiness Review on Jan. 25 to confirm the Feb. 3 launch date. Engineers began the countdown on Jan. 31, the same day the crew arrived at KSC.

Liftoff of space shuttle Challenger on the STS-41B mission Congressman C. William “Bill” Nelson, left, of Florida cheers on the STS-41B launch Challenger rises into the sky
Left: Liftoff of space shuttle Challenger on the STS-41B mission. Middle: Congressman C. William “Bill” Nelson, left, of Florida cheers on the STS-41B launch. Right: Challenger rises into the sky.

Liftoff occurred on schedule at 8:00 a.m. EST, with Challenger taking its five-member crew into the skies. Among the guests on hand to view the launch, Florida Congressman C. William “Bill” Nelson, who two years later flew on Columbia’s STS-61C mission, and in 2021 became NASA’s 14th administrator. Nine minutes after liftoff, Challenger’s three main engines cut off. The astronauts had reached space and experienced weightlessness for the first time, although they had not yet achieved orbit. The shuttle’s two Orbital Maneuvering System engines fired twice to complete the insertion into a circular 190-mile-high orbit.

Astronauts Ronald E. McNair, left, and Robert L. Stewart minutes after Challenger reached orbit Deploy of the Westar VI communications satellite for Western Union Deploy of the Palapa-B2 communications satellite for Indonesia
Left: Astronauts Ronald E. McNair, left, and Robert L. Stewart minutes after Challenger reached orbit. Middle: Deploy of the Westar VI communications satellite for Western Union. Right: Deploy of the Palapa-B2 communications satellite for Indonesia.

Once in orbit, the astronauts opened Challenger’s payload bay doors, deployed the Ku-band high-gain antenna to communicate with the Tracking and Data Relay Satellite, and closed the protective sunshields around the two satellites at the back of the payload bay. They tested the cameras in the payload bay and found that the one on the forward bulkhead’s starboard side did not tilt and panned only slowly, and only provided black and white imagery. Approximately eight hours into their first day, after opening its sunshield, the astronauts deployed the Westar VI communications satellite. Although the deployment went perfectly, 45 minutes later when the satellite’s Payload Assist Module-D (PAM-D) upper stage ignited to send it to geosynchronous transfer orbit, it fired for only a few seconds, stranding the satellite in a low, elliptical, and operationally useless orbit. Mission managers decided to delay the deployment of the Palapa satellite from the mission’s second day to the fourth day since it used an identical PAM-D upper stage. This provided engineers time to determine the cause of the first PAM-D failure. In place of the delayed deployment, the astronauts began several of the mission’s experiments, including activating the SPAS, and performed an initial checkout of the spacesuits. The third flight day included two retrograde OMS burns to lower Challenger’s orbit to a circular 173-mile-high orbit, and had planned to include the rendezvous operations with the IRT. However, shortly after its deployment from the payload bay, the balloon initially failed to inflate and then exploded, leaving no suitable target for a rendezvous. Using the shuttle’s radar and star trackers, the astronauts tracked the remains of the balloon to a distance of about 63 miles before abandoning the activity. In place of the IRT rendezvous, the crew checked out the RMS, with McNair at the controls.

The Shuttle Pallet Satellite-01A (SPAS-01A) in Challenger’s payload bay Robert L. Stewart wears the launch entry helmet during a prebreathe activity prior to a spacewalk
Left: The Shuttle Pallet Satellite-01A (SPAS-01A) in Challenger’s payload bay. Right: Robert L. Stewart wears the launch entry helmet during a prebreathe activity prior to a spacewalk.

The morning of flight day four, the astronauts decreased the shuttle’s cabin pressure from 14.7 pounds per square inch (psi) to 10.2 psi. This reduced the time the two spacewalkers needed to prebreathe pure oxygen to rid their blood of excess nitrogen that could result in the bends when working in their spacesuits at 4.3 psi. The astronauts deployed the Palapa satellite, and oriented the orbiter so that cameras on the RMS could observe the firing of the PAM-D engine. The burn initially appeared to go as planned, but engineers later determined that this engine suffered the same failure as the Westar PAM-D, similarly stranding Palapa in a low, elliptical, and operationally useless orbit. As a footnote, spacewalking astronauts flying MMUs retrieved both satellites during the STS-51A mission in November 1984 and returned them to Earth for reflight.

View of Bruce McCandless during the first test flight of the Manned Maneuvering Unit View of Bruce McCandless during the first test flight of the Manned Maneuvering Unit View of Bruce McCandless during the first test flight of the Manned Maneuvering Unit View of Challenger from McCandless’ vantage point
Views of Bruce McCandless during the first test flight of the Manned Maneuvering Unit, and a view, right, of Challenger from McCandless’ vantage point.

On flight day five, McCandless and Stewart began the second spacewalk of the shuttle program. After opening the airlock hatch, McCandless checked out the MMUs, donning the port side unit, designated with a number “3,” while Stewart prepared the Trunnion Pin Attachment Device (TPAD) and the MFR for use later in the spacewalk. As he began his first test flight in the MMU, McCandless said, “that may have been one small step for Neil, but it’s a heck of a big leap for me,” humorously echoing Apollo 11 astronaut Neil A. Armstrong’s first words after stepping onto the lunar surface. As an historical footnote, McCandless has served as capsule communicator during Armstrong’s historic Moonwalk. Floating just outside the flight deck aft windows, McCandless checked out the MMU’s flying in all three axes. He next translated down the length of the payload bay before beginning his long-distance travel. He flew 150 feet away from the orbiter, with a helmet mounted camera showing the receding shuttle, returned to the spacecraft, then backed out again to 320 feet before returning to the payload bay and stowing the MMU. With McNair operating the RMS, Stewart attached the MFR to the arm’s end effector. With the astronauts running slightly behind schedule, Mission Control decided to skip Stewart’s checkout of the MFR so he could proceed to his checkout of the MMU, the same unit McCandless just finished flying. McNair maneuvered McCandless in the MFR to the the SPAS to practice activities required for the Solar Max repair mission. Meanwhile Stewart began his test of the MMU, flying out to 150 feet, stopping, flying out to 300 feet, and returning to the payload bay. Once there, he attached the TPAD to the front of the MMU and practiced docking to the trunnion pin attached to the SPAS. He then returned the MMU to its stowage location. The two astronauts ended the spacewalk after 5 hours 55 minutes.

View in Mission Control at NASA’s Johnson Space Center in Houston during the first STS-41B spacewalk
View in Mission Control at NASA’s Johnson Space Center in Houston during the first STS-41B spacewalk as Bruce McCandless makes the first flight of the Manned Maneuvering Unit.

View of Bruce McCandless testing the Manipulator Foot Restraint at the end of the Remote Manipulator System, operated by Ronald E. McNair View of Bruce McCandless testing the Manipulator Foot Restraint at the end of the Remote Manipulator System, operated by Ronald E. McNair View of Bruce McCandless testing the Manipulator Foot Restraint at the end of the Remote Manipulator System, operated by Ronald E. McNair
Three views of Bruce McCandless testing the Manipulator Foot Restraint at the end of the Remote Manipulator System, operated by Ronald E. McNair.

Robert L. Stewart begins his first test flight of the Manned Maneuvering Unit (MMU) Stewart during his flight away from the payload bay Bruce McCandless prepares to dock his MMU with the attached Trunnion Pin Attachment Device to the SPAS-01A in Challenger’s payload bay
Left: Robert L. Stewart begins his first test flight of the Manned Maneuvering Unit (MMU). Middle: Stewart during his flight away from the payload bay. Right: Bruce McCandless prepares to dock his MMU with the attached Trunnion Pin Attachment Device to the SPAS-01A in Challenger’s payload bay.

Astronaut Ronald E. McNair poses with the camera for the Cinema 360 project, wearing a humorous “Cecil B. McNair” name tag, sunglasses, and beret McNair plays the soprano saxophone while floating in the middeck
Left: Astronaut Ronald E. McNair poses with the camera for the Cinema 360 project, wearing a humorous “Cecil B. McNair” name tag, sunglasses, and beret. Right: McNair plays the soprano saxophone while floating in the middeck.

On flight day six, McCandless and Stewart busied themselves with cleaning and recharging their spacesuits for the next day’s second spacewalk. McNair, an accomplished saxophonist, took some free time to play an instrument he brought along, the first musical instrument played on the shuttle. Space limitations in the shuttle precluded McNair flying his favorite tenor sax, so he learned to play the smaller soprano version of the instrument. McNair encountered unexpected effects of weightlessness on his playing. The water that normally accumulates inside wind instruments on Earth resulted instead in unwanted “bubbly” effects. The shuttle cabin’s dry air had unplanned effects on the instrument’s felt and leather pads, requiring several minutes of “rehydration” before proper playing. The reduced cabin atmospheric pressure for the spacewalks also required special reeds and mode of playing. Another historic event on this day, the Soviet Union launched a trio of cosmonauts to their Salyut-7 space station, bringing the total number of people in space to a then record-setting eight. This prompted one of the astronauts to comment, “It’s really getting to be populated up here.”

Bruce McCandless flies the Manned Maneuvering Unit (MMU) above Challenger’s payload bay during the second spacewalk McCandless grabs the Manipulator Foot Restraint that had floated away Robert L. Stewart flies the MMU above Challenger’s payload bay
Left: Bruce McCandless flies the Manned Maneuvering Unit (MMU) above Challenger’s payload bay during the second spacewalk. Middle: McCandless grabs the Manipulator Foot Restraint that had floated away. Right: Robert L. Stewart flies the MMU above Challenger’s payload bay.

On the seventh flight day, when Gibson began to operate the RMS, it did not respond as expected due to a failure in its wrist joint, and Mission Control requested that he stow it. Without the RMS, McCandless and Stewart could not practice docking with a slowly rotating SPAS, a critical test for the Solar Max mission. Instead, they practiced docking with the satellite berthed in the payload bay. McCandless placed himself in the starboard MMU, designated with a “2,” attached the TPAD, and practiced dockings before returning the MMU to its stowage location. Meanwhile, Stewart recharged the port MMU’s nitrogen tanks and took flight to practice dockings with the TPAD to the SPAS. He then returned the MMU to its portside location. At one point during the spacewalk, the MFR got loose and began drifting away. In an impromptu demonstration of rescuing an untethered astronaut, Brand maneuvered the orbiter so McCandless could retrieve it. McCandless donned the portside MMU to conduct evaluations of its automatic attitude hold and translation and rotational acceleration capabilities. In the meantime, Stewart practiced a hydrazine transfer operation using red-dyed freon as a substitute for the hazardous fuel. President Ronald W. Reagan called the astronauts during the spacewalk to congratulate them. McCandless returned the MMU to the port station while Stewart put away the fuel transfer equipment and tools. They climbed back into the airlock to close out the 6-hour 17-minute spacewalk, the longest of the shuttle program up to that time. Shortly after, the astronauts removed their spacesuits, exited the airlock, and repressurized Challenger’s cabin to 14.7 psi.

The STS-41B crew members pose near the end of their successful mission, in the middeck The STS-41B crew members pose near the end of their successful mission on the flight deck
The STS-41B crew members pose near the end of their successful mission, in the middeck, left, and on the flight deck, right.

On flight day eight, the day before entry, the astronauts busied themselves with stowing equipment. Brand and Gibson tested Challenger’s reaction control system thrusters and flight control surfaces in preparation for the next day’s landing. They held a 30-minute press conference with reporters on the ground asking them questions about their mission, with special emphasis on the historic spacewalks.

The astronauts close the payload bay doors at the end of the STS-41B mission Orange glow outside the windows during Challenger’s reentry A chase plane photographs Challenger during its descent to NASA’s Kennedy Space Center in Florida
Left: The astronauts close the payload bay doors at the end of the STS-41B mission. Middle: Orange glow outside the windows during Challenger’s reentry. Right: A chase plane photographs Challenger during its descent to NASA’s Kennedy Space Center in Florida.

Space shuttle Challenger touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida
Space shuttle Challenger touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.

Space shuttle Challenger rolls down the Shuttle Landing Facility (SLF) at NASA’s Kennedy Space Center (KSC) in Florida STS-41B astronauts depart space shuttle Challenger at the SLF A welcome home ceremony for the STS-41B crew at the KSC Visitor Center
Left: Space shuttle Challenger rolls down the Shuttle Landing Facility (SLF) at NASA’s Kennedy Space Center (KSC) in Florida. Middle: STS-41B astronauts depart space shuttle Challenger at the SLF. Right: A welcome home ceremony for the STS-41B crew at the KSC Visitor Center.

On entry day, Feb. 11, the astronauts opened the two sunshields that protected the two satellites before their deployments, retracted and stowed the Ku antenna, and closed the payload bay doors. Brand and Gibson oriented Challenger with its tail in the direction of flight and fired its two OMS engines to slow the spacecraft enough to drop it out of orbit. They reoriented the orbiter to fly with its heat shield exposed to the direction of flight as it entered Earth’s atmosphere. The buildup of ionized gases caused by the heat of reentry prevented communications for about 15 minutes. The shuttle’s reentry path took it over the U.S. Gulf coast as it traveled toward the Shuttle Landing Facility at KSC. At an altitude of 110,000 feet and traveling at Mach 4.3, Challenger crossed Florida’s west coast, carrying out roll reversal maneuvers to reduce its speed. As the shuttle went subsonic, it made its final turn onto the KSC runway. Gibson lowered Challenger’s landing gear and Brand brought the shuttle down for its first landing at KSC, just a few miles from where it launched 7 days 23 hours 16 minutes earlier.

Enjoy the crew narrated video of the STS-41B mission. Read Brand’s and Gibson’s recollections of the STS-41B mission in their oral histories with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By European Space Agency
      While satellites have revolutionised our ability to measure sea level with remarkable precision, their data becomes less reliable near coasts – where accurate information is most urgently needed. To address this critical gap, ESA’s Climate Change Initiative Sea Level Project research team has reprocessed almost two decades of satellite data to establish a pioneering network of ‘virtual’ coastal stations. These stations now provide, for the first time, reliable and consistent sea-level measurements along coastlines. 
      View the full article
    • By Space Force
      Col. Nick Hague, the first Guardian to launch into space, visited Vandenberg Space Force Base.

      View the full article
  • Check out these Videos

×
×
  • Create New...