Members Can Post Anonymously On This Site
Hubble's Latest Look at Pluto's Moons Supports a Common Birth
-
Similar Topics
-
By Space Force
Airmen and Guardians from Buckley Space Force Base participated in exercise Ulchi Freedom Shield 25, a combined, joint, all-domain exercise.
View the full article
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Glittering Glimpse of Star Birth From NASA’s Webb Telescope
Webb captured this sparkling scene of star birth in Pismis 24. Full image and caption below. Credits:
Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope. What appears to be a craggy, starlit mountaintop kissed by wispy clouds is actually a cosmic dust-scape being eaten away by the blistering winds and radiation of nearby, massive, infant stars.
Called Pismis 24, this young star cluster resides in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. Its proximity makes this region one of the best places to explore the properties of hot young stars and how they evolve.
At the heart of this glittering cluster is the brilliant Pismis 24-1. It is at the center of a clump of stars above the jagged orange peaks, and the tallest spire is pointing directly toward it. Pismis 24-1 appears as a gigantic single star, and it was once thought to be the most massive known star. Scientists have since learned that it is composed of at least two stars, though they cannot be resolved in this image. At 74 and 66 solar masses, respectively, the two known stars are still among the most massive and luminous stars ever seen.
Image A: Pismis 24 (NIRCam Image)
Webb captured this sparkling scene of star birth in Pismis 24, a young star cluster about 5,500 light-years from Earth in the constellation Scorpius. This region is one of the best places to explore the properties of hot young stars and how they evolve. Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) Captured in infrared light by Webb’s NIRCam (Near-Infrared Camera), this image reveals thousands of jewel-like stars of varying sizes and colors. The largest and most brilliant ones with the six-point diffraction spikes are the most massive stars in the cluster. Hundreds to thousands of smaller members of the cluster appear as white, yellow, and red, depending on their stellar type and the amount of dust enshrouding them. Webb also shows us tens of thousands of stars behind the cluster that are part of the Milky Way galaxy.
Super-hot, infant stars –some almost 8 times the temperature of the Sun – blast out scorching radiation and punishing winds that are sculpting a cavity into the wall of the star-forming nebula. That nebula extends far beyond NIRCam’s field of view. Only small portions of it are visible at the bottom and top right of the image. Streamers of hot, ionized gas flow off the ridges of the nebula, and wispy veils of gas and dust, illuminated by starlight, float around its towering peaks.
Dramatic spires jut from the glowing wall of gas, resisting the relentless radiation and winds. They are like fingers pointing toward the hot, young stars that have sculpted them. The fierce forces shaping and compressing these spires cause new stars to form within them. The tallest spire spans about 5.4 light-years from its tip to the bottom of the image. More than 200 of our solar systems out to Neptune’s orbit could fit into the width its tip, which is 0.14 lightyears.
In this image, the color cyan indicates hot or ionized hydrogen gas being heated up by the massive young stars. Dust molecules similar to smoke here on Earth are represented in orange. Red signifies cooler, denser molecular hydrogen. The darker the red, the denser the gas. Black denotes the densest gas, which is not emitting light. The wispy white features are dust and gas that are scattering starlight.
Video A: Expedition to Star Cluster Pismis 24
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
This scientific visualization takes viewers on a journey to a glittering young star cluster called Pismis 24. NASA’s James Webb Space Telescope captured this fantastical scene in the heart of the Lobster Nebula, approximately 5,500 light-years from Earth. Video: NASA, ESA, CSA, STScI, Leah Hustak (STScI), Christian Nieves (STScI); Image Processing: Alyssa Pagan (STScI); Script Writer: Frank Summers (STScI); Narration: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA Video B: Zoom to Pismis 24
This zoom-in video shows the location of the young star cluster Pismis 24 on the sky. It begins with a ground-based photo of the constellation Scorpius by the late astrophotographer Akira Fujii. The sequence closes in on the Lobster Nebula, using views from the Digitized Sky Survey. As the video homes in on a select portion, it fades to a VISTA image in infrared light. The zoom continues in to the region around Pismis 24, where it transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
Video: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI); Narration: Frank Summers (STScI); Script Writer: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA, Akira Fujii, DSS The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Ann Jenkins – jenkins@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Read more about Hubble’s view of Pismis 24
Listen to a sonification of Hubble’s view of Pismis 24
Animation Video: “How Dense Pillars Form in Molecular Clouds”
Read more: Webb’s Star Formation Discoveries
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Stars Stories
Universe
Share
Details
Last Updated Sep 04, 2025 Related Terms
James Webb Space Telescope (JWST) View the full article
-
By NASA
Explore This Section Overview Science Science Findings Juno’s Orbits Spacecraft People Stories Multimedia JunoCam Images Jupiter hosts the brightest and most spectacular auroras in the Solar System. Near its poles, these shimmering lights offer a glimpse into how the planet interacts with the solar wind and moons swept by Jupiter’s magnetic field. Unlike Earth’s northern lights, the largest moons of Jupiter create their own auroral signatures in the planet’s atmosphere — a phenomenon that Earth’s Moon does not produce. These moon-induced auroras, known as “satellite footprints,” reveal how each moon interacts with its local space environment.
Juno capturing the marks on Jupiter of all four Galilean moons. The auroras related to each are labeled Io, Eur (for Europa), Gan (for Ganymede), and Cal (for Callisto). NASA/JPL-Caltech/SwRI/UVS team/MSSS/Gill/Jónsson/Perry/Hue/Rabia Before NASA’s Juno mission, three of Jupiter’s four largest moons, known as Galilean moons — Io, Europa, and Ganymede — were shown to produce these distinct auroral signatures. But Callisto, the most distant of the Galilean moons, remained a mystery. Despite multiple attempts using NASA’s Hubble Space Telescope, Callisto’s footprint had proven elusive, both because it is faint and because it most often lies atop the brighter main auroral oval, the region where auroras are displayed.
NASA’s Juno mission, orbiting Jupiter since 2016, offers unprecedented close-up views of these polar light shows. But to image Callisto’s footprint, the main auroral oval needs to move aside while the polar region is being imaged. And to bring to bear Juno’s arsenal of instruments studying fields and particles, the spacecraft’s trajectory must carry it across the magnetic field line linking Callisto and Jupiter.
These two events serendipitously occurred during Juno’s 22nd orbit of the giant planet, in September 2019, revealing Callisto’s auroral footprint and providing a sample of the particle population, electromagnetic waves, and magnetic fields associated with the interaction.
Jupiter’s magnetic field extends far beyond its major moons, carving out a vast region (magnetosphere) enveloped by, and buffeted by, the solar wind streaming from our Sun. Just as solar storms on Earth push the northern lights to more southern latitudes, Jupiter’s auroras are also affected by our Sun’s activity. In September 2019, a massive, high-density solar stream buffeted Jupiter’s magnetosphere, briefly revealing — as the auroral oval moved toward Jupiter’s equator — a faint but distinct signature associated with Callisto. This discovery finally confirms that all four Galilean moons leave their mark on Jupiter’s atmosphere, and that Callisto’s footprints are sustained much like those of its siblings, completing the family portrait of the Galilean moon auroral signatures.
An international team of scientists led by Jonas Rabia of the Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, in Toulouse, France, published their paper on the discovery, “In situ and remote observations of the ultraviolet footprint of the moon Callisto by the Juno spacecraft,” in the journal Nature Communications on Sept. 1, 2025.
Share
Details
Last Updated Sep 02, 2025 Related Terms
Auroras Callisto Juno Jupiter Jupiter Moons Keep Exploring Discover More Topics From NASA
Jupiter: Exploration
Jupiter
Jupiter Moons
Callisto
View the full article
-
By European Space Agency
Image: Webb takes a fresh look at a classic deep field View the full article
-
By NASA
An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26, 2025, at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to design air taxis and other new electric aircraft, there’s a growing need to understand how the materials behave. That’s why NASA is investigating potential air taxi materials and designs to best protect passengers in the event of a crash.
On June 26, 2025, at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
Image Credit: NASA/Mark Knopp
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.