Jump to content

30 Years Ago: STS-60, the First Shuttle-Mir Mission


Recommended Posts

  • Publishers
Posted

On Feb. 3, 1994, space shuttle Discovery took off on its 18th flight, STS-60. Its six-person crew of Commander Charles F. Bolden, Pilot Kenneth S. Reightler, and Mission Specialists N. Jan Davis, Ronald M. Sega, Franklin R. Chang-Díaz, who served as payload commander, and Sergei K. Krikalev of the Russian Space Agency, now Roscosmos, flew the first mission of the Shuttle-Mir Program. Other objectives of the mission included the first flight of the Wake Shield Facility, a free-flying satellite using the ultra-vacuum of space to generate semi-conductor films for advanced electronics and the second flight of a Spacehab commercially developed pressurized module to enable multidisciplinary research and technology demonstrations. The eight-day mission marked an important step forward in international cooperation and the commercial development of space.

The STS-60 crew patch The STS-60 crew of (clockwise from bottom left) Pilot Kenneth S. Reightler, Mission Specialists Franklin R. Chang-Díaz, Ronald M. Sega, Sergei K. Krikalev representing the Russian Space Agency, now Roscosmos, and N. Jan Davis, and Commander Charles F. Bolden The patch for the Phase 1 Shuttle-Mir program
Left: The STS-60 crew patch. Middle: The STS-60 crew of (clockwise from bottom left) Pilot Kenneth S. Reightler, Mission Specialists Franklin R. Chang-Díaz, Ronald M. Sega, Sergei K. Krikalev representing the Russian Space Agency, now Roscosmos, and N. Jan Davis, and Commander Charles F. Bolden. Right: The patch for the Phase 1 Shuttle-Mir program.

In Oct. 1992, NASA announced Bolden, Reightler, Davis, Sega, and Chang-Díaz as the STS-60 crew. For Bolden and Chang-Díaz, STS-60 represented their fourth trips into space; for Bolden the second as commander. Reightler and Davis each had completed one previous spaceflight, with Sega as the sole rookie on the crew. The announcement noted that one of two RSA cosmonauts already in training at NASA’s Johnson Space Center in Houston would join the crew at a later date. In early April 1993, NASA designated Krikalev, a veteran of two long-duration missions aboard the Mir space station, as the prime international crew member, with Vladimir G. Titov named as his backup. The now six-person crew trained extensively for the next nine months for the history-making flight.

Space shuttle Discovery departs the Vehicle Assembly Building on its way to Launch Pad 39A The STS-60 crew departs crew quarters for Launch Pad 39A Liftoff of space shuttle Discovery to begin the STS-60 mission
Left: Space shuttle Discovery departs the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The STS-60 crew departs crew quarters for Launch Pad 39A. Right: Liftoff of space shuttle Discovery to begin the STS-60 mission.

Discovery landed at NASA’s Kennedy Space Center in Florida after its previous mission, STS-51, on Sept. 22, 1993, where workers towed it to the Orbiter Processing Facility to refurbish it for STS-60. They towed it to the Vehicle Assembly Building on Jan. 4, 1994, for mating with its external tank and twin solid rocket boosters, and rolled the completed stack to Launch Pad 39A six days later. The astronauts participated in the Terminal Countdown Demonstration Test, a rehearsal for the actual countdown, on Jan. 14. Senior managers held the Flight Readiness Review on Jan. 22 to confirm the Feb. 3 launch date. Engineers began the countdown for launch on Jan. 31. Liftoff occurred on schedule at 7:10 a.m. EST on Feb. 3, and Discovery and its six-person crew flew up the U.S. East Coast to achieve a 57-degree inclination orbit.

Discovery’s payload bay, showing the Spacehab module including the externally mounted Sample Return Experiment, and the Canadian-built Remote Manipulator System Astronauts N. Jan Davis, left, and Franklin R. Chang-Díaz open the hatch to the Spacehab module Ronald M. Sega monitors Sergei K. Krikalev as he performs a neurosensory investigation
Left: Discovery’s payload bay, showing the Spacehab module including the externally mounted Sample Return Experiment, and the Canadian-built Remote Manipulator System. Middle: Astronauts N. Jan Davis, left, and Franklin R. Chang-Díaz open the hatch to the Spacehab module. Right: Ronald M. Sega monitors Sergei K. Krikalev as he performs a neurosensory investigation.

Once in orbit, the astronauts opened Discovery’s payload bay doors to begin their activities. Chang-Díaz and Davis opened the hatches to the Spacehab, accessed from the middeck through the airlock and a connecting tunnel, and activated the module’s systems. They began activating some of the 12 experiments in the Spacehab, primarily focused on biotechnology and materials processing. In the middeck, Reightler, Davis, Sega, and Krikalev performed the first session of the joint neurovestibular experiment, which they repeated five more times during the mission. The astronauts also began activating some of the experiments in the shuttle’s middeck.

Charles F. Bolden prepares to take a blood sample from Franklin R. Chang-Díaz for the metabolic experiment Kenneth S. Reightler processes blood samples in the centrifuge Reightler places the processed blood samples in the GN2 freezer
Left: Charles F. Bolden prepares to take a blood sample from Franklin R. Chang-Díaz for the metabolic experiment. Middle: Kenneth S. Reightler processes blood samples in the centrifuge. Right: Reightler places the processed blood samples in the GN2 freezer.

The astronauts began the joint metabolic experiment to investigate biochemical responses to weightlessness on flight day 2. With Bolden and Chang-Díaz serving as phlebotomists, they and Reightler participated as subjects for this study that involved drawing blood samples, spinning them in a centrifuge, and placing them in gaseous nitrogen freezers for return to Earth for analysis.

The Wake Shield Facility (WSF) deployed at the end of the Canadian-built Remote Manipulator System, with the aurora in the background The WSF at the end of the RMS The robotic arm about to stow the Wake Shield Facility
Left: The Wake Shield Facility (WSF) deployed at the end of the Canadian-built Remote Manipulator System, with the aurora in the background. Middle: The WSF at the end of the RMS. Right: The robotic arm about to stow the Wake Shield Facility.

Operations with the wake shield began in flight day three. Davis grappled the WSF (Wake Shield Facility) with the shuttle’s Canadian-built remote manipulator system, or robotic arm, lifting it out of the payload bay, placing it in the “ram clearing” attitude to have atomic oxygen present in low Earth orbit cleanse it of contaminants that could hamper the purity of any produced samples. Plans called for Davis to then release the facility for its two days of free flight. During this process, the astronauts and Mission Control could not properly assess the satellite’s configuration, and troubleshooting efforts led to loss of communications with it. Mission Control instructed the astronauts to berth the facility overnight as ground teams assessed the problem. Engineers traced the problem to a radio frequency interference issue missed due to inadequate preflight testing. The next morning, Davis once again picked up the facility with the robotic arm. The communications issue recurred, but a reboot of the facility’s computer appeared to fix that problem. However, problems cropped up with the satellite’s navigation system, precluding its deployment. All operations and manufacturing occurred with the WSF remaining attached to the robotic arm. Despite this, the facility demonstrated its capabilities by producing five semiconductor films of good quality before Davis berthed it back in the payload bay on flight day seven.

N. Jan Davis takes a peripheral venous pressure measurement on Charles F. Bolden Davis operates a fluid processing apparatus, one of the experiments in the Commercial Generic Bioprocessing Apparatus Bolden operates the Organic Separation experiment
Left: N. Jan Davis takes a peripheral venous pressure measurement on Charles F. Bolden. Middle: Davis operates a fluid processing apparatus, one of the experiments in the Commercial Generic Bioprocessing Apparatus. Right: Bolden operates the Organic Separation experiment.

Meanwhile, the astronauts continued with experiments in the middeck and the Spacehab. Another joint investigation called for the measurement of peripheral venous blood pressure. The Spacehab module contained 12 experiments in the fields of biotechnology, materials processing, and microacceleration environment measurement. A thirteenth experiment mounted on the module’s exterior collected cosmic dust particles on aerogel capture cells.

Ronald M. Sega operates the liquid phase sintering experiment Franklin R. Chang-Díaz operates the Space Experiment Furnace The Stirling Orbiter Refrigerator/Freezer technology demonstration The STS-60 crew enjoys ice cream stored in the freezer
Left: Ronald M. Sega operates the liquid phase sintering experiment. Middle left: Franklin R. Chang-Díaz operates the Space Experiment Furnace. Middle right: The Stirling Orbiter Refrigerator/Freezer technology demonstration. Right: The STS-60 crew enjoys ice cream stored in the freezer.

A technology demonstration on STS-60 involved the test flight of a Stirling Orbiter Refrigerator/Freezer. Planned for use on future missions to store biological samples, on STS-60 the astronauts tested the unit’s ability to chill water containers and provided the crew with a rare treat in space: real ice cream.

In the Mission Control Center, President William J. “Bill” Clinton chats with the STS-60 crew during his visit to NASA’s Johnson Space Center The Mir crew and the STS-60 crew talk with each other through the communications link established during the ABC program Good Morning America
Left: In the Mission Control Center, President William J. “Bill” Clinton chats with the STS-60 crew during his visit to NASA’s Johnson Space Center. Right: The Mir crew and the STS-60 crew talk with each other through the communications link established during the ABC program Good Morning America.

On the astronauts’ fifth day in orbit, President William J. “Bill” Clinton visited Johnson and stopped in the Mission Control Center to talk with them. NASA Administrator Daniel S. Golden and Johnson Director Carolyn L. Huntoon accompanied the President on his tour. President Clinton praised the crew, saying, “I think this is the first step in what will become the norm in global cooperation. And when we get this space station finished…it’s going to be a force for peace and progress that will be truly historic, and you will have played a major role in that.” The following day, the ABC program Good Morning America set up a communications link between Bolden, Davis, and Krikalev aboard Discovery and the three cosmonauts aboard the Mir space station. The two crews chatted with each other and answered reporters’ questions.

STS-60 Earth observation photographs of North American city Los Angeles STS-60 Earth observation photographs of North American city Chicago STS-60 Earth observation photographs of North American city Montréal STS-60 Earth observation photographs of North American city New York City
A selection of STS-60 Earth observation photographs of North American cities. Left: Los Angeles. Middle left: Chicago. Middle right: Montréal. Right: New York City.

Every space mission includes astronaut Earth photography, and the 57-degree inclination of STS-60 enabled this crew to image areas on the planet not usually visible to astronauts. Many of the images included spectacular views of snow-covered landscapes in the northern hemisphere winter.

Deployment of one of the six spheres of the Orbital Debris Radar Calibration Spheres experiment The six spheres fly away from the shuttle Deployment of the University of Bremen satellite
Left: Deployment of one of the six spheres of the Orbital Debris Radar Calibration Spheres experiment. Middle: The six spheres fly away from the shuttle. Right: Deployment of the University of Bremen satellite.

Once the astronauts had stowed the WSF on flight day seven, they could proceed to the deployment of two payloads. The first called Orbital Debris Radar Calibration Spheres consisted of deploying six metal spheres of three different sizes from Discovery’s payload bay. Ground-based radars and optical telescopes observed and tracked the metal spheres to calibrate their instruments. The University of Bremen in Germany provided the second deployable payload. It measured various parameters of its in-orbit environment as well as its internal pressure and temperature as it burned up when it reentered Earth’s atmosphere.

The STS-60 crew members pose near the end of their successful mission Franklin R. Chang-Díaz, left, and N. Jan Davis close the hatch to the Spacehab module at the end of the mission
Left: The STS-60 crew members pose near the end of their successful mission. Right: Franklin R. Chang-Díaz, left, and N. Jan Davis close the hatch to the Spacehab module at the end of the mission.

With most of the experiments completed by flight day eight, the astronauts busied themselves with tidying up the middeck and the Spacehab. Bolden and Reightler tested Discovery’s reaction control system thrusters and flight control surfaces in preparation for the deorbit, entry, and landing the following day.

Charles F. Bolden prepares to bring Discovery home Bolden makes a perfect touchdown at NASA’s Kennedy Space Center in Florida to conclude STS-60
Left: Charles F. Bolden prepares to bring Discovery home. Right: Bolden makes a perfect touchdown at NASA’s Kennedy Space Center in Florida to conclude STS-60.

On the morning of Feb. 11, the mission’s final day in space, Chang-Díaz and Davis deactivated the Spacehab and closed the hatches to the module. The astronauts donned their launch and entry suits, but NASA delayed their deorbit burn by one orbit due to inclement weather at John F. Kennedy Space Center. Ninety minutes later, they fired the two Orbital Maneuvering System engines to bring them out of orbit and Bolden guided Discovery to a smooth landing at Kennedy, ending the STS-60 mission after 8 days, 7 hours, and 9 minutes, having circled the Earth 130 times.

Enjoy the crew narrate a video about the STS-60 mission. Read Bolden’s and Sega‘s recollections of the STS-60 mission in their oral histories with Johnson’s History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:01:43 An essential part of ESA’s Space Safety programme is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a true circular economy in space, minimising the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030.  
      ESA has now taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE, planned for launch in 2029. 
      RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite, extending the life of geostationary satellites that need support with attitude and orbit control, but are otherwise in working order.  
      After verifying that it meets all the performance standards in a first demonstration, prime contractor, operator and co-founder D-Orbit will start commercial life extension services for geostationary satellites. 
      ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refuelling, refurbishment and assembling – all essential elements for creating a circular economy in space.   
      Watch with subtitles
      View the full article
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The first Proliferated Warfighter Space Architecture Tranche 1 Transport Layer space vehicles successfully launched from Vandenberg Space Force Base.

      View the full article
    • By Space Force
      The U.S. Space Force honored Ed Mornston, associate deputy chief of Space Operations for Intelligence, for his 50 years of combined military and civilian service.

      View the full article
    • By NASA
      Boarding passes will carry participants’ names on NASA’s Artemis II mission in 2026.Credit: NASA Lee este comunicado de prensa en español aquí.
      NASA is inviting the public to join the agency’s Artemis II test flight as four astronauts venture around the Moon and back to test systems and hardware needed for deep space exploration. As part of the agency’s “Send Your Name with Artemis II” effort, anyone can claim their spot by signing up before Jan. 21.
       
      Participants will launch their name aboard the Orion spacecraft and SLS (Space Launch System) rocket alongside NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.
       
      “Artemis II is a key test flight in our effort to return humans to the Moon’s surface and build toward future missions to Mars, and it’s also an opportunity to inspire people across the globe and to give them an opportunity to follow along as we lead the way in human exploration deeper into space,” said Lori Glaze, acting associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. 
       
      The collected names will be put on an SD card loaded aboard Orion before launch. In return, participants can download a boarding pass with their name on it as a collectable.
       
      To add your name and receive an English-language boarding pass, visit: 

      https://go.nasa.gov/artemisnames
       
      To add your name and receive a Spanish-language boarding pass, visit: 

      https://go.nasa.gov/TuNombreArtemis
       
      As part of a Golden Age of innovation and exploration, the approximately 10-day Artemis II test flight, launching no later than April 2026, is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
       
      To learn more about the mission visit:
       
      https://www.nasa.gov/mission/artemis-ii/
       
      -end-
       
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov

      Share
      Details
      Last Updated Sep 09, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Missions View the full article
  • Check out these Videos

×
×
  • Create New...