Jump to content

Discovery Alert: A ‘Super-Earth’ in the Habitable Zone


Recommended Posts

  • Publishers
Posted

4 min read

Discovery Alert: A ‘Super-Earth’ in the Habitable Zone

On the right lower foreground, this illustration shows a 'super-Earth' – a planet larger than Earth but smaller than Neptune – with a brownish atmosphere flecked with white, horizontal strips of cloud. The planet's left side is partially lit by its reddish parent star, a red dwarf, smaller and cooler than our Sun, seen in the upper left of the image.
This illustration shows one way that planet TOI-715 b, a super-Earth in the habitable zone around its star, might appear to a nearby observer.
NASA/JPL-Caltech

The discovery: A “super-Earth” ripe for further investigation orbits a small, reddish star that is, by astronomical standards, fairly close to us – only 137 light-years away. The same system also might harbor a second, Earth-sized planet.

Key facts: The bigger planet, dubbed TOI-715 b, is about one and a half times as wide as Earth, and orbits within the “conservative” habitable zone around its parent star. That’s the distance from the star that could give the planet the right temperature for liquid water to form on its surface. Several other factors would have to line up, of course, for surface water to be present, especially having a suitable atmosphere. But the conservative habitable zone – a narrower and potentially more robust definition than the broader “optimistic” habitable zone – puts it in prime position, at least by the rough measurements made so far. The smaller planet could be only slightly larger than Earth, and also might dwell just inside the conservative habitable zone.

Details: Astronomers are beginning to write a whole new chapter in our understanding of exoplanets – planets beyond our solar system. The newest spaceborne instruments, including those onboard NASA’s James Webb Space Telescope, are designed not just to detect these distant worlds, but to reveal some of their characteristics. That includes the composition of their atmospheres, which could offer clues to the possible presence of life.

The recently discovered super-Earth, TOI-715 b, might be making its appearance at just the right time. Its parent star is a red dwarf, smaller and cooler than our Sun; a number of such stars are known to host small, rocky worlds. At the moment, they’re the best bet for finding habitable planets. These planets make far closer orbits than those around stars like our Sun, but because red dwarfs are smaller and cooler, the planets can crowd closer and still be safely within the star’s habitable zone. The tighter orbits also mean those that cross the faces of their stars – that is, when viewed by our space telescopes – cross far more often. In the case of planet b, that’s once every 19 days, a “year” on this strange world. So these star-crossing (“transiting”) planets can be more easily detected and more frequently observed. That’s the case for TESS (the Transiting Exoplanet Survey Satellite), which found the new planet and has been adding to astronomers’ stockpile of habitable-zone exoplanets since its launch in 2018. Observing such transits for, say, an Earth-sized planet around a Sun-like star (and waiting for an Earth year, 365 days, to catch another transit) is beyond the capability of existing space telescopes.

Planet TOI-175 b joins the list of habitable-zone planets that could be more closely scrutinized by the Webb telescope, perhaps even for signs of an atmosphere. Much will depend on the planet’s other properties, including how massive it is and whether it can be classed as a “water world” – making its atmosphere, if present, more prominent and far less difficult to detect than that of a more massive, denser and drier world, likely to hold its lower-profile atmosphere closer to the surface.

Fun facts: If the possible second, Earth-sized planet in the system also is confirmed, it would become the smallest habitable-zone planet discovered by TESS so far. The discovery also exceeded early expectations for TESS by finding an Earth-sized world in the habitable zone.

The discoverers: An international team of scientists led by Georgina Dransfield of the University of Birmingham, United Kingdom, published a paper in January 2024 on their discovery, “A 1.55 R habitable-zone planet hosted by TOI-715, an M4 star near the ecliptic South Pole,” in the journal, “Monthly Notices of the Royal Astronomical Society.” An international array of facilities used to confirm the planet included Gemini-South, Las Cumbres Observatory telescopes, the ExTrA telescopes, the SPECULOOS network, and the TRAPPIST-south telescope.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP Artist’s concept of a planet orbiting two brown dwarfs. The planet is in a polar orbit (red), perpendicular to the mutual orbit of the two brown dwarfs (blue). ESO/L. Calçada The Discovery
      A newly discovered planetary system, informally known as 2M1510, is among the strangest ever found. An apparent planet traces out an orbit that carries it far over the poles of two brown dwarfs. This pair of mysterious objects – too massive to be planets, not massive enough to be stars – also orbit each other. Yet a third brown dwarf orbits the other two at an extreme distance.
      Key Facts
      In a typical arrangement, as in our solar system, families of planets orbit their parent stars in more-or-less a flat plane – the orbital plane – that matches the star’s equator. The rotation of the star, too, aligns with this plane. Everyone is “coplanar:” flat, placid, stately.
      Not so for possible planet 2M1510 b (considered a “candidate planet” pending further measurements). If confirmed, the planet would be in a “polar orbit” around the two central brown dwarfs – in other words, its orbital plane would be perpendicular to the plane in which the two brown dwarfs orbit each other. Take two flat disks, merge them together at an angle in the shape of an X, and you have the essence of this orbital configuration.
      “Circumbinary” planets, those orbiting two stars at once, are rare enough. A circumbinary orbiting at a 90-degree tilt was, until now, unheard of. But new measurements of this system, using the ESO (European Southern Observatory) Very Large Telescope in Chile, appear to reveal what scientists previously only imagined. 
      Details
      The method by which the study’s science team teased out the planet’s vertiginous existence is itself a bit of a wild ride. The candidate planet cannot be detected the way most exoplanets – planets around other stars – are found today: the “transit” method, a kind of mini-eclipse, a tiny dip in starlight when the planet crosses the face of its star.
      Instead they used the next most prolific method, “radial velocity” measurements. Orbiting planets cause their stars to rock back and forth ever so slightly, as the planets’ gravity pulls the stars one way and another; that pull causes subtle, but measurable, shifts in the star’s light spectrum. Add one more twist to the detection in this case: the push-me-pull-you effect of the planet on the two brown dwarfs’ orbit around each other. The path of the brown dwarf pair’s 21-day mutual orbit is being subtly altered in a way that can only be explained, the study’s authors conclude, by a polar-orbiting planet.
      Fun Facts
      Only 16 circumbinary planets – out of more than 5,800 confirmed exoplanets – have been found by scientists so far, most by the transit method. Twelve of those were found using NASA’s now-retired Kepler Space Telescope, the mission that takes the prize for the most transit detections (nearly 2,800). Scientists have observed a small number of debris disks and “protoplanetary” disks in polar orbits, and suspected that polar-orbiting planets might be out there as well. They seem at last to have turned one up.
      The Discoverers
      An international science team led by Thomas A. Baycroft, a Ph.D. student in astronomy and astrophysics at the University of Birmingham, U.K., published a paper describing their discovery in the journal “Science Advances” in April 2025. The planet was entered into NASA’s Exoplanet Archive on May 1, 2025. The system’s full name is 2MASS J15104786-281874 (2M1510 for short).
      Share








      Details
      Last Updated May 21, 2025 Related Terms
      Exoplanets Astrophysics Binary Stars Brown Dwarfs Science & Research The Universe Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      View the full article
    • By NASA
      The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
      Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
      Learn more about NASA’s Space Shuttle Program.
      Image credit: NASA
      View the full article
    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
      Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
      Key Facts
      Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
      Details
      Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
      Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
      How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
      The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
      Fun Facts
      These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
      Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
      The Discoverers
      An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
      Universe



      Exoplanets



      Search for Life



      Exoplanet Catalog


      This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A NASA researcher and innovation architect from the Convergent Aeronautics Solutions project Discovery team collaborating at a whiteboard during a visit to Chapel Hill, N.C. on Aug. 13, 2024.NASA / Ariella Knight Convergent Aeronautics Solutions (CAS) Discovery identifies problems worth solving for the benefit of all.
      We formulate “convergent” problems—across multiple disciplines and sectors—and build footholds toward potentially transformative opportunities in aeronautics. As aeronautics rapidly advances, it is increasingly intersecting with other sectors like energy, healthcare, emergency response, economic resilience, the space economy, and more.
      CAS Discovery builds new innovation tools and methods, a workforce adept at innovation methods, and transdisciplinary teams of researchers within and beyond NASA that conduct regular “Discovery sprints”—expeditions into cross-sector topic areas that could beneficially transform aeronautics and humanity.
      WHAT is Discovery?
      Participatory
      It is difficult to understand and effectively address stakeholders’ needs & capabilities without engaging them. Discovery, in consultation with key NASA offices and other government agencies, has honed mechanisms to lawfully and respectfully engage and invite participation from stakeholders, communities, industry, NGOs and government to collaboratively formulate complex societal challenges tied to aviation. 
      Convergent
      Typical organizational structures limit convergence across knowledge boundaries. CAS Discovery is intentionally cross-sector and transdisciplinary because the most impactful ideas often lie at the intersection of boundaries, the borderlands where multiple disciplines and communities come together. We work to emerge multi-sector, system-of-systems challenges that integrate political, economic, social, technological, environmental, legal and ethical trends, needs, and capabilities.
      Future-Focused
      Organizations have a tendency of being driven by short-term thinking and relatively short time horizons. CAS Discovery uses strategic foresight methods to examine 20 to 50-year time horizons, systematically ingesting and synthesizing signals and trends from aero and non-aero sources to envision a variety of scenarios to uncover opportunities for the future of aeronautics.
      Ecosystemic
      We study the ecosystems that are part of aeronautics and aerospace. This helps in broadening consideration of impacts while practicing foresight. It enhances our awareness of the environment and gives stakeholders the ability to see ripple effects across technologies, economies, communities, etc. We seek to benefit the wellness of the entire ecosystem while also benefiting the constituents.
      A group of NASA researchers and leaders from the Convergent Aeronautics Solutions project Discovery team at the agency’s Glenn Research Center in Cleveland, on April 30, 2024.NASA / Ricaurte Chock WHO is Discovery?
      NASA Researchers
      They are the engine that propels CAS Discovery. Our cross-center Discovery sprint and foresight teams are composed of researchers from NASA’s Ames Research Center and Armstrong Flight Research Center in California, Glenn Research Center in Cleveland, and Langley Research Center in Virginia.
      Researchers from Outside of NASA
      They collaborate with us as subject matter experts or Discovery sprint team members to contribute their backgrounds in fields less common within NASA, such as energy, economics, anthropology, and other areas. This collaboration happens through many mechanisms, such as freelancing, crowdsourcing, interviews, webinars, and podcasts.
      Stakeholders
      They are engaged in various ways and to different degrees, often co-envisioning potential futures, co-formulating problems, and co-designing solutions.
      Innovation Architects
      They are the glue that holds CAS Discovery together and the anti-glue that keeps our teams from getting stuck. They come from a wide range of experience, each bringing deep expertise in leading transdisciplinary teams and stakeholders through processes and methods from strategic foresight, complex systems design, human-centered design, and more.
      CAS Center Integration Leads (CILs)
      They work with NASA line management at each Aeronautics center to bring NASA researchers and potential new PIs into CAS. CILs also host annual Wicked Wild idea pitch events to bring new problem areas and solution ideas into CAS Discovery and early Execution phases.
      Ames Research Center CIL: Ty Huang Armstrong Flight Research Center CIL: Matt Kearns  Glenn Research Center CIL: Jeffrey Chin Langley Research Center CIL: Devin Pugh-Thomas CAS Discovery Leads
      They oversee Discovery sprint and strategic foresight teams, topics, and processes; new tools and continuous improvement experiments; and the overall health of the CAS innovation front-end pipeline and related strategic outputs.
      Discovery Lead: Eric Reynolds Brubaker, Langley Research Center Foresight Lead: Vikram Shyam, Glenn Research Center Sample Discovery Publications
      COMING SOON: Links to Technical Memorandums and conference papers.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Concludes Wind Study
      Article 2 years ago 3 min read NASA Armstrong Supports Wind Study
      Article 2 years ago 4 min read NASA Interns Help Identify Aviation Solutions to Health Care Challenges
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Convergent Aeronautics Solutions
      Science Missions
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 21, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.gov Related Terms
      Convergent Aeronautics Solutions View the full article
    • By NASA
      Artist’s rendering of a potentially habitable super-Earth orbiting a star called HD 20794. Illustration credit: Gabriel Pérez Díaz, SMM (IAC) The Discovery
      A possible “super-Earth” orbits a relatively close, Sun-like star, and could be a habitable world – but one of extreme temperature swings, from scorching heat to deep freeze.
      Key Facts
      The newly confirmed planet is the outermost of three detected so far around a star called HD 20794, just 20 light-years from Earth. Its 647-day orbit is comparable to Mars in our solar system. But this planet’s orbit is highly eccentric, stretched into an oval shape. That brings the planet close enough to the star to experience runaway heating for part of its year, then carries it far enough away to freeze any potential water on its surface. The planet has been bouncing between these extremes roughly every 300 days – perhaps for billions of years.
      Details
      The planet spends a good chunk of its year in the “habitable zone” around its star, the orbital distance that would allow liquid water to form on the surface under the right atmospheric conditions. But because of its eccentric orbit, it moves to a distance interior to the inner edge of the habitable zone when closest to the star, and outside the outer edge when farthest away. At its closest, the planet’s distance from the star is comparable to Venus’s distance from the Sun; at its farthest point, it is nearly twice the distance from Earth to the Sun. The planet is possibly rocky, like Earth, but could be a heftier version – about six times as massive as our home planet.
      Star HD 20794 and its posse of possible planets have been extensively studied, but the international team of astronomers that confirmed the outer planet, led by Nicola Nari of Light Bridges S.L. and the Instituto de Astrofisica de Canarias, examined more than 20 years worth of data to pin down all three planets’ orbits and likely masses.
      The scientists relied on data from two ground-based, precision instruments: HARPS, the High Accuracy Radial velocity Planet Searcher in La Silla, Chile, and ESPRESSO, the Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations in Paranal, Chile. Both instruments, connected to powerful telescopes, measure tiny shifts in the light spectrum of stars, caused by the gravity of planets tugging the star back and forth as they orbit.
      But such tiny shifts in the star’s spectrum also can be caused by imposters – spots, flares, or other activity on the star’s surface, carried along as the star rotates and masquerading as orbiting planets. The science team spent years painstakingly analyzing the spectrum shifts, or “radial velocity” data, for any sign of background noise or even jitters from the instruments themselves. They confirmed the reputation of HD 20794 as a fairly quiet star, not prone to outbursts that might be confused for signs of orbiting planets.
      Fun Facts
      The elliptically orbiting super-Earth appears to be an ideal target for future space-based telescopes designed to search for habitable worlds, seeking possible signs of life. High on the list is NASA’s Habitable Worlds Observatory, which will someday examine the atmospheres of Earth-sized planets around Sun-like stars. When launched in the decades ahead, the observatory would spread the light from such planets into a spectrum to determine which gases are present – including those that might reveal some form of life. The relative closeness of HD 20974, only 20 light-years away, its brightness, and its low level of surface activity – not to mention the third planet’s wild temperature swings – could make this system a prime candidate for scrutiny by HWO.
      The Discoverers
      The international science team that confirmed the eccentric super-Earth was led by researcher Nicola Nari of the Light Bridges S.L. and the Instituto de Astrofisica de Canarias, and included Dr. Michael Cretignier of the University of Oxford, who first picked up the potential planet’s signal in 2022. Their paper, “Revisiting the multi-planet system of the nearby star HD 20794,” was published online by the journal, Astronomy and Astrophysics, in January 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...