Jump to content

NASA Shares Assignments for its SpaceX Crew-9 Space Station Mission


Recommended Posts

  • Publishers
Posted
crew-9.jpg?w=2048
Official Crew-9 Crew Portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov
NASA

As part of NASA’s SpaceX Crew-9 mission, four crew members are preparing to launch to the International Space Station and conduct a wide-ranging set of operational and research activities for the benefit of all.

Launching aboard the Dragon spacecraft, NASA astronauts Commander Zena Cardman, Pilot Nick Hague, and Mission Specialist Stephanie Wilson, and Roscosmos cosmonaut Mission Specialist Aleksandr Gorbunov, will join Expedition 71 and 72 crew members no earlier than August. They will arrive to the space station for a short duration handover with NASA’s SpaceX Crew-8 mission

This will be the first spaceflight for Cardman, who was selected as a NASA astronaut in 2017. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At time of selection, she was a doctoral candidate in geosciences. Cardman’s research focused on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and development for lunar surface exploration.

With a total of 203 days in space, this will be Hague’s third launch and second mission to the orbiting laboratory. During his first launch in 2018, Hague and his crewmate, Roscosmos cosmonaut Alexey Ovchinin, experienced a rocket booster failure resulting in an in-flight launch abort. The Soyuz MS-10 spacecraft landed safely. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague and his crewmates participated in hundreds of experiments in biology, biotechnology, physical science, and Earth science. Hague conducted three spacewalks, to upgrade space station power systems and install a docking adapter for commercial spacecraft. As an active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department in Washington, where he served as the USSF director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA working on the Boeing Starliner Program until this flight assignment.

A veteran of three spaceflights, STS-121, STS-120, and STS-131, Wilson has spent 42 days in space aboard three separate space shuttle Discovery missions. Before her selection as a NASA astronaut in 1996, she earned her bachelor’s degree in Engineering Science from Harvard University in Cambridge, Massachusetts, a master’s degree in Aerospace Engineering from the University of Texas in Austin, and worked at Martin Marietta and NASA’s Jet Propulsion Laboratory in Southern California. During her first mission, STS-121 in November 2004, she and her crewmates spent 13 days in orbit. Wilson served as the robotic arm operator for spacecraft inspection, for the installation of the “Leonardo” Multi-Purpose Logistics Module, and for spacewalk support. In November 2006, Wilson and her STS-120 crewmates aboard Discovery delivered the Harmony module to the station and relocated a solar array. In May 2009, Wilson and her STS-131 crewmates completed another mission to resupply the station, delivering a new ammonia tank for the station cooling system, new crew sleeping quarters, a window observation facility, and a freezer for experiments. During her nearly 30 years with NASA, Wilson served as the integration branch chief for NASA’s Astronaut Office focusing on International Space Station systems and payload operations, and on a nine-month detail, served as the acting chief of NASA’s Program and Project Integration Office at the agency’s Glenn Research Center in Cleveland.

This will be Gorbunov’s first trip to space and the station. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operation and repair of aircraft, helicopters, and aircraft engines. Before being selected as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corporation Energia and supported cargo spacecraft launches from the Baikonur cosmodrome.

This is the ninth rotational mission to the space station under NASA’s Commercial Crew Program, which works with the American aerospace industry to meet the goal of safe, reliable, and cost-effective transportation to and from the orbital outpost on American-made rockets and spacecraft launching from American soil.

For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon where the agency is preparing for future human exploration of Mars.

Find more information on NASA’s Commercial Crew Program at:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Technicians completed integrating NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow-On Lagrange 1 (SWFO-L1) satellite to an Evolved Expendable Launch Vehicle Secondary Payload Adapter ring at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Sept. 4.
      Integrating the rideshares to the ring precedes the next prelaunch launch milestone: attaching NASA’s IMAP (Interstellar Mapping and Acceleration Probe) heliosphere mapping observatory to a payload adapter that connects to the ring. This configuration allows all three spacecraft to launch atop a single SpaceX Falcon 9 rocket, maximizing efficiency by sharing the ride to space.
      The Carruthers observatory will capture light from Earth’s geocorona, the part of the outer atmosphere that emits ultraviolet light. The observations will advance our understanding of space weather, planetary atmospheric evolution, and the long-term history of water on Earth.
      The SWFO-L1 satellite will keep a watchful eye on the Sun and the near-Earth environment for space weather activity. It is the first NOAA satellite designed specifically for and fully dedicated to continuous space weather observations. It will serve as an early warning beacon for destructive space weather events that could impact our technological dependent infrastructure and industries.
      The spacecraft will launch together aboard a SpaceX Falcon 9 rocket no earlier than 7:32 a.m. EDT on Tuesday, Sept. 23, from Launch Complex 39A at NASA Kennedy.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
  • Check out these Videos

×
×
  • Create New...