Members Can Post Anonymously On This Site
NASA Awards Contract for Aviation, Railroad Safety Reporting Systems
-
Similar Topics
-
By NASA
Credit: NASA NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.
The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.
Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.
For more information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
Johnson Space Center Artemis Commercial Crew International Space Station (ISS) ISS Research Johnson Flight Operations Space Launch System (SLS) View the full article
-
By NASA
Teams at NASA’s Kennedy Space Center in Florida participate in the first joint integrated launch countdown simulation for Artemis I inside Firing Room 1 of the Launch Control Center on July 8, 2021. Seen at the top of the room is Charlie Blackwell-Thompson (right), launch director.Credit: NASA/Ben Smegelsky As four astronauts venture around the Moon on NASA’s Artemis II test flight in 2026, many people will support the journey from here on Earth. Teams directing operations from the ground include the mission management team, launch control team, flight control team, and the landing and recovery team, each with additional support personnel who are experts in every individual system and subsystem. The teams have managed every aspect of the test flight and ensure NASA is prepared to send humans beyond our atmosphere and into a new Golden Age of innovation and exploration.
Mission management team
Reviews of mission status and risk assessments are conducted by the mission management team, a group of 15 core members and additional advisors. Amit Kshatriya, NASA’s deputy associate administrator, Moon to Mars Program, will serve as the mission management team chair for the test flight.
Two days prior to launch, the mission management team will assemble to review mission risks and address any lingering preflight concerns. With more than 20 years of human spaceflight experience, Kshatriya will conduct polls at key decision points, providing direction for the relevant operations team. If circumstances during the flight go beyond established decision criteria or flight rules outlined ahead of the mission, the team will assess the situation based on the information available and decide how to respond.
Matt Ramsey, serving as the Artemis II mission manager, will oversee all elements of mission preparedness prior to the mission management team assembly two days before launch and serve as deputy mission management team chair throughout the mission. With more than two decades of experience at NASA, Ramsey managed the SLS (Space Launch System) Engineering Support Center for Artemis I.
Launch control team
The launch control team coordinates launch operations from NASA’s Kennedy Space Center in Florida. Charlie Blackwell-Thompson serves as the agency’s Artemis launch director, responsible for integrating and coordinating launch operations for the SLS, Orion, and Exploration Ground Systems Programs, including developing and implementing plans for countdown, troubleshooting, and timing.
Two days before liftoff, when the countdown for launch begins, Blackwell-Thompson’s team will begin preparations for launch from their console positions in Firing Room 1 in Kennedy’s Launch Control Center. On the day of launch, Blackwell-Thompson and her team will manage countdown progress, propellent loading, and launch commit criteria. The criteria include standards for systems involved in launch, and the team will monitor the rocket until it lifts off from the launchpad.
Rick Henfling, flight director, monitors systems in the Flight Control Center at NASA’s Johnson Space Center in Houston.Credit: NASA Flight control team
From solid rocket booster ignition until the crew is safety extracted from the Orion capsule following splashdown in the Pacific Ocean at the end of their mission, the flight control team oversees operations from the Mission Control Center at NASA’s Johnson Space Center in Houston. Multiple flight directors will take turns leading the team throughout the 10-day mission to support operations around the clock. Jeff Radigan, bringing more than 20 years of International Space Station experience to Artemis II, will serve as lead flight director for the mission. The work for this role begins well in advance of the mission with building mission timelines; developing flight rules and procedures; leading the flight control team through simulations that prepare them for the flight test; and then helping them carry out the plan.
On launch day, the ascent flight control team will be led by Judd Frieling, an Artemis I flight director who also supported more than 20 shuttle missions as a flight controller. Frieling is responsible for overseeing the crew’s ascent to space, including performance of SLS core stage engines, solid rocket boosters, and propulsion systems from the moment of launch until the separation of Orion from the Interim Cryogenic Propulsion Stage. As Orion is propelled toward the Moon, guidance of operations will pass to the next flight director.
At the opposite end of the mission, Rick Henfling will take the lead for Orion’s return to Earth and splashdown. Orion will reenter Earth’s atmosphere at roughly 25,000 mph to about 20 mph for a parachute-assisted splashdown. Drawing from a background supporting space shuttle ascent, entry, and abort operations and 10 years as a space station flight director, Henfling and the team will monitor weather forecasts for landing, watch over Orion’s systems through the dynamic entry phase, and to ensure the spacecraft is safely shutdown before handing over operations to the recovery team.
At any point during the mission, a single voice will speak to the crew in space on behalf of all members of the flight control team: the capsule communicator, or CapCom. The CapCom ensures the crew in space receives clear and concise communication from the teams supporting them on the ground. NASA astronaut Stan Love will serve as the lead CapCom for Artemis II. Love flew aboard STS-122 mission and has acted as CapCom for more than a dozen space station expeditions. He is also part of the astronaut office’s Rapid Prototyping Lab, which played a key role in development of Orion’s displays and controls.
Landing, recovery team
Retrieval of the crew and Orion crew module will be in the hands of the landing and recovery team, led by Lili Villarreal. The team will depart San Diego on a Department of Defense ship, and head to the vicinity of the landing site several days before splashdown for final preparations alongside the U.S. Navy and DOD.
The recovery team is made up of personnel operating from the ship, land, and air to recover both astronauts and the capsule. Decision-making authority during the recovery phase of mission operations belongs to Villarreal, who served as deputy flow director for Artemis I and worked in the operations division for the space station.
The success of Artemis II will pave the way for the next phase of the agency’s campaign, landing on the lunar South Pole region on Artemis III. These teams, along with the four crew members and countless NASA engineers, scientists, and personnel, are driving humanity’s exploration on the Moon, Mars, and beyond.
View the full article
-
By NASA
Think of NASA’s Stennis Space Center, and one likely thinks of rocket propulsion testing. The site has a long history of testing to support the nation’s space efforts, including the current Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars.
However, NASA Stennis also is working to become a key supporter of more terrestrial exploration. Indeed, in terms of unmanned range operations, NASA Stennis has it all – layers of restricted airspace, a closed canal system, and acres upon acres of protected terrain.
Field TestU.S. Naval Research Laboratory personnel conduct a field experiment involving an unmanned aerial system at NASA Stennis in March 2024. (NASA/Danny Nowlin)NASA/Danny Nowlin Marine OperationU.S. Naval Research laboratory personnel conduct tests on The Blue Boat made by Blue Robotics, an unmanned surface vessel, at NOAA’s National Data Buoy Center basin at NASA Stennis on Dec. 19, 2024.NASA/Danny Nowlin Bird’s-Eye ViewAn unmanned aerial system provides a bird’s-eye view of an RS-25 on Feb. 22, 2024, on the Fred Haise Test Stand at NASA Stennis. NASA The NASA site near Bay St. Louis, Mississippi, is an ideal location for all types of air, marine, and ground testing, said Range Operations Manager Jason Peterson. “My job is to understand the customer, and their requirements and limitations, to help them succeed,” he added. “What makes NASA Stennis unique is our federally protected area for users to operate.”
The need to learn about unmanned systems, such as drones or underwater vehicles, in a safe environment is growing as technology advances. Think of it like learning to drive a car in a parking lot before hitting the road.
NASA Stennis has already begun leveraging these capabilities. In 2024, the center established an agreement with Skydweller Aero Inc. to utilize restricted airspace for flight testing of autonomous, solar-powered aircraft. This first-of-its-kind agreement paves the way for future collaborations as NASA Stennis expands its customer-based operations beyond onsite tenants.
An unmanned aerial system provides a panoramic view of the NASA Stennis test complex and canal system. NASA Look to the Sky
NASA Stennis has its own protected airspace, similar to how airports control the skies around them. The Federal Aviation Administration (FAA) first established this restricted airspace in 1966 and expanded it in 2016 to support both NASA missions and U.S. Department of Defense operations.
NASA Stennis is one of only two non-military restricted airspaces in the nation. It operates two main airspace zones – a propulsion testing area extending from ground level up to 12,000 feet for safely testing rocket engines without interfering with regular air traffic, and an aircraft operations zone covering 100 square miles up to 6,000 feet, with 15 dedicated acres for drone launch and recovery.
NASA Stennis staff provide comprehensive support including safety reviews, coordination between aircraft operators and FAA air traffic controllers, and constant communication with range safety personnel to ensure all operations are conducted safely.
Marine Operations
The centerpiece of the NASA Stennis marine range is its extensive 7.5-mile canal system, protected by a lock-and-dam system that connects to Pearl River tributaries. This network accommodates various marine platforms including traditional watercraft, autonomous underwater vehicles, remotely operated vehicles, unmanned surface vessels, and aerial drones requiring water landing capabilities.
The controlled environment provides protection from adverse weather and interference, making it ideal for testing sensitive or proprietary technologies. The facility is particularly valuable for emerging technologies in autonomous systems, sensor integration, and multi-domain operations where air, surface, and underwater platforms operate in coordination.
Ground Level
NASA Stennis facilities are located on 13,800 acres of fenced-in property, surrounded by an additional 125,000 acres of protected land known as the acoustical buffer zone. This area was established primarily through permanent lease to allow testing of large rocket hardware without disturbing area residents and is closely monitored without permanent habitable structures.
“The location helps reduce hazards to the public when testing new technology,” Peterson said. “With supporting infrastructure for office space, storage, or manufacturing, this makes NASA Stennis a great place to test, train, operate, and even manufacture.”
The NASA Stennis federal city already hosts more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations, with room for more. All tenants share operating costs while pursuing individual missions.
‘Open for Business’
NASA Stennis leaders are keenly aware of the opportunity such unique capabilities afford. The center’s 2024-2028 strategic plan states NASA Stennis will leverage these unique capabilities to support testing and operation of uncrewed systems.
Leaders are working to identify opportunities to maximize site capabilities and develop an effective business model. “NASA Stennis is open for business, and we want to provide a user-friendly range for operators to test vehicles by creating an environment that is safe, cost-effective, and focused on mission success,” Peterson said.
For information about range operations at NASA’s Stennis Space Center, visit:
Range and Airspace Operations – NASA
For information about Stennis Space Center, visit:
https://www.nasa.gov/stennis
Share
Details
Last Updated Aug 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
Article 2 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
Article 4 months ago View the full article
-
By NASA
Lindy Garay always knew she wanted to develop software. She did not anticipate that her work would contribute to human spaceflight.
The electrical and software engineering degree Garay earned from the University of Texas at Austin paved the way for a 25-year career with NASA’s Johnson Space Center in Houston. Her first job out of college was developing software for the International Space Station Program’s original space station training facility simulator. “I had not always been interested in working in the space program, but I became enamored with being able to contribute to such an important mission,” she said.
Official portrait of Lindy Garay.NASA Today, Garay serves as a training systems software architect and is the technical lead for training system external interfaces. That means she leads the team that helps connect training simulations from NASA’s external partners with simulations run by Johnson’s Mission Training Center (MTC) to support crew and flight controller training. The MTC currently provides training capabilities for the International Space Station Program, the Commercial Crew Program, and Artemis campaign components such as the Orion Program and the human landing system.
Garay said that not having an aerospace background was challenging at the beginning of her career, but she overcame that by leaning on teammates who had knowledge and experience in the field. “Every successful endeavor depends on having a solid team of dedicated people working toward one goal,” she said. “Success also depends on good communication, flexibility, and being willing to listen to different opinions,” she added.
Garay was recently named as a 2025 NASA Space Flight Awareness Program Honoree – one of the highest recognitions presented to the agency’s workforce. Recipients must have significantly contributed to the human spaceflight program to ensure flight safety and mission success. Garay’s commendation acknowledged her “sustained superior performance, dedication, and commitment to the Flight Operations Directorate’s goals” and her instrumental role in the success of several major training systems projects. In particular, she was recognized for contributions to the High-Level Architecture simulation framework, which is used to create realistic simulations of visiting vehicles’ arrival, docking, and departure from the space station.
From left to right, Johnson Space Flight Awareness (SFA) Lead Jessica Cordero, SFA Coordinator Michelle Minor, Johnson Space Center Acting Director Stephen Koerner, Drew Faulkner, Adam Korona, Teresa Sindelar, Lindy Garay, Lindsay Kirk, Keith Barr, Ephram Rubin, and NASA astronaut Randy Bresnik. NASA/Kim Shiflett Garay and 36 other agency honorees were celebrated during a special ceremony in Cocoa Beach, Florida, and had the opportunity to attend the launch of NASA’s SpaceX Crew-10 mission at NASA’s Kennedy Space Center. “That was quite an honor,” she said.
Outside of work, Garay may be found cheering on Houston’s sports teams. She enjoys traveling to watch the Texans and the Astros play.
Garay is also rooting for the Artemis Generation as NASA prepares to return to the Moon and journey on to Mars. She offered this advice: “Always remember the importance and the magnitude of the whole mission.”
Explore More
3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
Article 3 days ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
Article 3 days ago 4 min read NASA’s Artemis II Lunar Science Operations to Inform Future Missions
While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
Article 4 days ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ResilienX employees Angelo Niforatos, left, and Ryan Pleskach, right, overview the NASA safety tools integrated into the company’s commercial system, July 11, 2025, at the ResilienX Headquarters in Syracuse, New York. Credit: ResilienX A future with advanced air mobility aircraft populating the skies will require the U.S. to implement enhanced preflight planning that can mitigate potential risks well before takeoff – and NASA is working to develop the tools to make that happen.
Preflight planning is critical to ensuring safety in the complex, high-risk environments of the future airspace. Timely, predictive, and up-to-date risk assessment within a single platform makes it much easier for drone or air taxi operators to check flight plans for high-risk concerns.
NASA is working on tools to deliver those services, and in June, the agency and aviation safety company ResilienX Inc. demonstrated how these tools can be integrated into commercial systems.
During a series of tests conducted at ResilienX’s facility in Syracuse, New York, researchers used NASA services that allowed flight operators to submit flight plans prior to departure, obtain risk assessment results, and then decide whether to proceed with flights or change their flight plans and re-assess risks. Allowing operators to perform these tasks quickly reduces the safety risk to flight passengers as well as humans on the ground.
The three NASA-developed services are intended to assess unique risks associated with highly automated aircraft flying at low altitudes over cities.
The partnership was managed under a Phase III NASA Small Business Innovation Research (SBIR) contract, which is an extension of prior work to assess weather-related risks. This collaboration is already leading to direct technology transfer of safety systems into ResilienX’s platform. The partnership is also intended to provide indirect benefits for ResilienX partners and customers, such as the U.S. Air Force and regional operators, helping to advance the overall safety of future airspace operations.
This work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission. The mission seeks to deliver data, findings, and recommendations to guide the industry’s development of future air taxis and drones.
Share
Details
Last Updated Aug 22, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Armstrong Flight Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Airspace Operations and Safety Program Drones & You Small Business Innovation Research / Small Business System-Wide Safety Explore More
5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
Article 3 days ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
Article 3 days ago 4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.