Jump to content

2023 NASA International Space Apps Challenge Announces 10 Global Winners


Recommended Posts

  • Publishers
Posted

5 min read

2023 NASA International Space Apps Challenge Announces 10 Global Winners

Image of a portion of Earth as seen from space
This Earth observation was captured during a day pass by the Expedition 40 crew aboard the International Space Station on September 2, 2014.
European Space Agency Astronaut Alexander Gerst

Ten teams from around the world have been named the Global Winners of the 2023 NASA International Space Apps Challenge. The Challenge is the largest annual global hackathon, and gives participants the opportunity to engage with real world problems we face on Earth and in space.

The 2023 NASA Space Apps Challenge welcomed 57,999 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants came together from 152 countries and territories to celebrate a Year of Open Science with the theme of “Explore Open Science Together” in collaboration with NASA’s Transform to Open Science (TOPS). Teams used NASA and Space Agency Partner free and open data to address challenges written by NASA Subject Matter Experts. Challenges ranged in topic from climate change to biodiversity, space exploration, and data visualization.

The 2023 Global Winners represent the highest rated projects out of 5,556 submissions, as determined by subject matter experts from NASA and 13 Space Agency Partners.

“The NASA International Space Apps Challenge is the perfect example of global cooperation – uniting the next generation of innovators across 152 countries this year into a community that contributes to NASA’s mission for the benefit of all,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Lowering the boundaries of science through the NASA Space Apps Challenge is paramount for inspiring the next generation – the Artemis Generation – so that they can solve today’s problems on Earth and in space for tomorrow’s future. Congratulations to the 2023 Global Winners of the NASA Space Apps Challenge.”

In this year’s live Global Winners announcement, former NASA astronaut Dr. Cady Coleman praised the innovation and collaboration of the NASA Space Apps community and the Global Winners.

“Participants’ innovative solutions using NASA and Space Agency Partner open data and their commitment to global collaboration are paving the way for a more inclusive scientific community for the next generation of scientists, technologists, designers, and storytellers,” said Coleman. “Their projects show the power of what we can accomplish with open science and knowledge sharing.”

The ten 2023 NASA Space Apps Challenge Global Winners are:

Best Use of Science Award: LunarTech Ensemble

Challenge: Make a Moonquake Map 2.0!

Country/Territory: Egypt

This team developed a website and immersive game to help people understand and visualize the lunar seismic data gathered by instruments left behind during NASA’s Apollo missions.

Learn more about LunarTech Ensemble’s winning project

Best Use of Data Award: Storm Prophet

Challenge: Develop the Oracle of DSCOVR

Country/Territory: Ukraine

Team “Storm Prophet” created a data model to accurately predict geomagnetic storm levels using data analysis and LSTM models.

Learn more about Storm Prophet’s winning project

Best Use of Technology Award: Spacebee

Challenge: Make a Moonquake Map 2.0!

Country/Territory: United States and Argentina (Universal Event)

This team developed a website that integrates moonquake data collected by seismometers deployed on Apollo missions, including the moonquake locations, type of moonquake, and date and data plots based on ALSEP Apollo experiments data.

Learn more about Spacebee’s winning project

Galactic Impact Award: Greetings from Earth!!

Challenge: Ocean Gardens

Country/Territory: Brazil

This team developed an interactive website that provides a visualization of NASA data that allows the user to visualize oceans not merely as vast expanses of water, but as the gardens of our planet, regulating climate and nurturing diverse life forms.

Learn more about Greetings from Earth!!’s winning project

Best Mission Concept Award: ASTROGENESIS

Challenge: Planetary Tourism Office

Country/Territory: Peru

This team created an interactive platform that allows you to explore the cosmos by creating personalized itineraries to visit planets, moons, and other celestial destinations.

Learn more about ASTROGENESIS’s winning project

Most Inspirational Award: Space Quest Maidens – Donzelas da Missao Espacial

Challenge: Eclipses: Perspective is Everything

Country/Territory: Brazil

This team developed an interactive educational tool called ECLIPSE: CELESTIAL SHADOWS to teach children about the mechanics of eclipses.

Learn more about Space Quest Maidens – Donzelas da Missão Espacials winning project

Best Storytelling Award: TeamVoyagers

Challenge: Everything Starts with Water

Country/Territory: Bangladesh

Team Voyagers built an interactive web-based game that tells the imperative story of the complexities of the water cycle, as well as the urgent need to understand the climate’s impact on freshwater resources.

Learn more about Team Voyagers’ winning project

Global Connection Award: Arcobaleno

Challenge: Immersed in the Sounds of Space

Country/Territory: Brazil

Team Arcoboleno created a method that transforms 2D and 3D images into a sensory experience. Their project aims to provide people with sight impairments a way to connect with the world and explore the cosmos through the sonification of NASA open data.

Learn more about Arcobaleno’s winning project

Art & Technology Award: Oogway Comics

Challenge: Habitable Exoplanets: Creating Worlds Beyond Our Own

Country/Territory: Tajikistan

Oogway Comics used NASA data to conceptualize an exoplanet suitable for life and developed a comic book to tell the planet’s story.

Learn more about Oogway Comics’ winning project

Local Impact Award: $quality_over_quantity

Challenge: Explore a Biodiversity Hotspot with Imaging Spectroscopy

Country/Territory: Taiwan

This team developed a method to explore local biodiversity hotspots and prioritize protection of areas with more efficiency.

Learn more about $quality_over_quantitys’ winning project

You can watch the Global Winners Announcement HERE.

Interested in participating in the 2024 NASA Space Apps Challenge? Mark your calendars for Oct. 5 and 6!

Registration will open later this year. At that time, participants will be able to register for a Local Event hosted by NASA Space Apps Local Leads around the world.

Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut and Expedition 65 Flight Engineer Megan McArthur removes Kidney Cells-02 hardware inside the Space Automated Bioproduct Laboratory and swaps media inside the Microgravity Science Glovebox. The human research study seeks to improve treatments for kidney stones and osteoporosis NASA astronaut Megan McArthur has retired, concluding a career spanning more than two decades. A veteran of two spaceflights, McArthur logged 213 days in space, including being the first woman to pilot a SpaceX Dragon spacecraft and the last person to “touch” the Hubble Space Telescope with the space shuttle’s robotic arm.
      McArthur launched as pilot of NASA’s SpaceX Crew-2 mission in April 2021, marking her second spaceflight and her first long-duration stay aboard the International Space Station. During the 200-day mission, she served as a flight engineer for Expeditions 65/66, conducting a wide array of scientific experiments in human health, materials sciences, and robotics to advance exploration of the Moon under Artemis and prepare to send American astronauts to Mars.
      Her first spaceflight was STS-125 in 2009, aboard the space shuttle Atlantis, the fifth and final servicing mission to Hubble. As a mission specialist, she was responsible for capturing the telescope with the robotic arm, as well as supporting five spacewalks to update and repair Hubble after its first 19 years in space. She also played a key role in supporting shuttle operations during launch, rendezvous with the telescope, and landing.
      “Megan’s thoughtful leadership, operational excellence, and deep commitment to science and exploration have made a lasting impact,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her contributions have helped shape the future of human space exploration, and we are incredibly grateful for her service.”
      In addition to her flight experience, McArthur has served in various technical and leadership roles within NASA. In 2019, she became the deputy division chief of the Astronaut Office, supporting astronaut training, development, and ongoing spaceflight operations. She also served as the assistant director of flight operations for the International Space Station Program starting in 2017.
      Since 2022, McArthur has served as the chief science officer at Space Center Houston, NASA Johnson’s official visitor center. Continuing in this role, she actively promotes public engagement with space exploration themes, aiming to increase understanding of the benefits to humanity and enhance science literacy.
      “Megan brought a unique combination of technical skill and compassion to everything she did,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “Whether in space or on the ground, she embodied the best of what it means to be an astronaut and a teammate. Her contributions will be felt by the next generation of explorers she helped train.”
      McArthur was born in Honolulu and raised as a “Navy kid” in many different locations worldwide. She earned a Bachelor of Science in aerospace engineering from the University of California, Los Angeles, and a doctorate in oceanography from the Scripps Institution of Oceanography at the University of California, San Diego. Before being selected as an astronaut in 2000, she conducted oceanographic research focusing on underwater acoustics, which involved shipboard work and extensive scuba diving.
      McArthur is married to former NASA astronaut Robert Behnken, who also flew aboard the Dragon Endeavour spacecraft during the agency’s SpaceX Demo-2 mission in 2020.
      “It was an incredible privilege to serve as a NASA astronaut, working with scientists from around the world on cutting-edge research that continues to have a lasting impact here on Earth and prepares humanity for future exploration at the Moon and Mars,” said McArthur. “From NASA’s Hubble Space Telescope to the International Space Station, our research lab in low Earth orbit, humanity has developed incredible tools that help us answer important scientific questions, solve complex engineering challenges, and gain a deeper understanding of our place in the universe. Seeing our beautiful planet from space makes it so clear how fragile and precious our home is, and how vital it is that we protect it. I am grateful I had the opportunity to contribute to this work, and I’m excited to watch our brilliant engineers and scientists at NASA conquer new challenges and pursue further scientific discoveries for the benefit of all.”
      To learn more about NASA’s astronauts and their contributions to space exploration, visit:
      https://www.nasa.gov/astronauts
      -end-

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov

      View the full article
    • By NASA
      From left to right: JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and NASA astronauts Jonny Kim (seated), Zena Cardman, and Mike Fincke conduct training scenarios with their instructors at NASA’s Johnson Space Center in Houston, for their upcoming mission to the International Space Station. Credit: NASA/Helen Arase Vargas NASA astronaut Jonny Kim and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui will connect with students in New York as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 9:20 a.m. EDT on Friday, Sept. 5, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m. Wednesday, Sept. 3, to Sara Sloves at: 917-441-1234 or ssloves@thecomputerschool.org.
      The Computer School will host this event in New York for middle school students. The goal of this event is to extend learning by exposing students to the real-world experiences and engineering challenges of astronauts working and living aboard the International Space Station.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency deep space missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring the world through discovery in a new Golden Age of innovation and exploration.
      See more information on NASA in-flight calls at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
      In-flight Education Downlinks Humans in Space International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robert Mosher, HIAD materials and processing lead at NASA Langley, holds up a piece of webbing material, known as Zylon, which comprise the straps of the HIAD.NASA/Joe Atkinson Components of a NASA technology that could one day help crew and cargo enter harsh planetary environments, like that of Mars, are taking an extended trip to space courtesy of the United States Space Force.
      On Aug. 21, several pieces of webbing material, known as Zylon, which comprise the straps of the HIAD (Hypersonic Inflatable Aerodynamic Decelerator) aeroshell developed by NASA’s Langley Research Center in Hampton, Virginia, launched to low Earth orbit along with other experiments aboard the Space Force’s X-37B Orbital Test Vehicle. This trip will help researchers characterize how the Zylon webbing responds to long-duration exposure to the harsh vacuum of space.
      The strap material on the HIAD aeroshell serves two purposes – short strap lengths hold together HIAD’s inflatable rings and longer pieces help to distribute the load more evenly across the cone-shaped structure. The HIAD aeroshell technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.
      “We’re researching how HIAD technology could help get humans to Mars. We want to look at the effects of long-term exposure to space – as if the Zylon material is going for a potential six to nine-month mission to Mars,” said Robert Mosher, HIAD materials and processing lead at NASA Langley. “We want to make sure we know how to protect those structural materials in the long term.”
      The Zylon straps are visible here during the inflation of LOFTID as part of a November 2022 orbital flight test. LOFTID was a version of the HIAD aeroshell — a technology that could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.NASA Flying Zylon material aboard the Space Force’s X-37B mission will help NASA researchers understand what kind of aging might occur to the webbing on a long space journey before it experiences the extreme environments of atmospheric entry, during which it has to retain strength at high temperatures.
      Multiple samples are in small canisters on the X-37B. Mosher used two different techniques to put the strap material in the canisters. Some he tightly coiled up, others he stuffed in.
      “Typically, we pack a HIAD aeroshell kind of like you pack a parachute, so they’re compressed,” he said. “We wanted to see if there was a difference between tightly coiled material and stuff-packed material like you would normally see on a HIAD.”
      Some of the canisters also include tiny temperature and humidity sensors set to collect readings at regular intervals. When the Space Force returns the samples from the X-37B flight, Mosher will compare them to a set of samples that have remained in canisters here on Earth to look for signs of degradation.
      The material launched to space aboard the Space Force’s X-37B Orbital Test Vehicle, seen here earlier this year.Courtesy of the United States Space Force “Getting this chance to have the Zylon material exposed to space for an extended period of time will begin to give us some data on the long-term packing of a HIAD,” Mosher said.
      Uninflated HIAD aeroshells can be packed into small spaces within a spacecraft. This results in a decelerator that can be much larger than the diameter of its launch vehicle and can therefore land much heavier loads and deliver them to higher elevations on a planet or other celestial body.
      Rigid aeroshells, the sizes of which are dictated by the diameters of their launch vehicles, typically 4.5 to 5 meters, are capable of landing well-equipped, car-sized rovers on Mars. By contrast, an inflatable HIAD, with an 18-20m diameter, could land the equivalent of a small, fully furnished ranch house with a car in the garage on Mars.
      NASA’s HIAD aeroshell developments build on the success of the agency’s LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) mission that launched on Nov. 10, 2022, resulting in valuable insights into how this technology performs under the stress of re-entering Earth’s atmosphere after being exposed to space for a short time period.
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/tdm/
      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Aug 27, 2025 Related Terms
      Langley Research Center Space Technology Mission Directorate Technology Demonstration Missions Program Explore More
      4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 2 days ago 2 min read NASA Tests Tools to Assess Drone Safety Over Cities
      Article 5 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 1 week ago View the full article
    • By Space Force
      The USSF and nine partner nations concluded Schriever Wargame 2025, capping a two-week wargame that tested strategies, evaluated future technologies and strengthened international cooperation in space.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA is kicking off the 2026 Student Launch challenge, looking for new student teams to design, build, and launch high-powered rockets with a scientific or engineering payload next April. 
      The agency is seeking proposals until Monday, Sept. 22. Details about this year’s challenge are in the 2026 handbook, which outlines the requirements for middle school, high school, and college students to participate. After a competitive proposal selection process, selected teams must meet documentation milestones and undergo detailed reviews throughout the activity year. 
      NASA’s Student Launch, a STEM competition, officially kicks off its 26th anniversary with the 2026 handbook. “These bright students rise to a nine-month challenge for Student Launch that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are part of the Golden Age of explorers – the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      Student Launch will culminate with on-site events starting on April 22, 2026. Final launches are scheduled for April 25, at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville, Alabama. 
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2026 season, the payload challenge will take inspiration from the Artemis missions, which seek to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. This year’s payload challenge tasks college and university teams with designing, building, and flying a habitat to safely house four STEMnauts – non-living objects representing astronauts – during extended missions. The habitat must include equipment capable of both collecting and testing soil samples to support agricultural research operations.
      Nearly 1,000 students participated in the 2025 Student Launch competition – making up 71 teams from across the United States. Teams launched their rockets to an altitude between 4,000 and 6,000 feet, while attempting to make a successful landing and executing the payload mission.
      NASA Student Launch has been at the forefront of experiential education, providing students from middle school through university with unparalleled opportunities to engage in real-world engineering and scientific research.
      John Eckhart
      Technical Coordinator, Student Launch
       Former NASA Marshall Director Art Stephenson started Student Launch in 2000 as a student rocket competition at the center. Just two university teams competed in the inaugural challenge – Alabama A&M University and the University of Alabama in Huntsville. The challenge continues to soar with thousands of students participating in the STEM competition each year, and many going on to a career with NASA.
      NASA Marshall’s Office of STEM Engagement hosts Student Launch to provide students with real-world experiences that encourage them to pursue degrees and careers in science, technology, engineering, and mathematics. Student Launch is one of several NASA Artemis Student Challenges – a variety of activities that expose students to the knowledge and technology required to achieve the goals of the agency’s Artemis campaign. 
      In addition to NASA Office of STEM Engagement’s Next Generation STEM project, NASA Space Operations Mission Directorate, Northrop Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and, Bastion Technologies provide funding and leadership for the Student Launch competition. 
      To learn more about Student Launch, visit: 
      www.nasa.gov/studentlaunch
      Share
      Details
      Last Updated Aug 25, 2025 Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA’s Artemis II Lunar Science Operations to Inform Future Missions
      While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
      Article 4 days ago 5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing
      Article 7 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
  • Check out these Videos

×
×
  • Create New...