Jump to content

Overview for NASA’s Northrop Grumman 20th Commercial Resupply Mission


Recommended Posts

  • Publishers
Posted
NASA's Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.
NASA’s Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.
NASA
NASA's Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA

NASA, Northrop Grumman, and SpaceX are targeting 12:29 p.m. EST on Monday, Jan. 29, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. Filled with more than 7,800 pounds of supplies, the Cygnus cargo spacecraft, carried atop the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 20th Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. The backup launch opportunity will be at 12:07 p.m. Tuesday, Jan. 30.

Live launch coverage will begin at 12:15 p.m. and air on NASA+, NASA Television, the NASA app, YouTube, and on the agency’s website, with prelaunch events starting Wednesday, Jan. 24. Learn how to stream NASA TV through a variety of platforms

Learn more at:  nasa.gov/northropgrumman

Northrop Grumman S.S. Patricia “Patty” Hilliard Robertson

Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.
Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.
NASA

Arrival & Departure

The Cygnus spacecraft will arrive at the orbiting laboratory at 3:35 a.m. Wednesday, Jan. 31, filled with supplies, hardware, and critical materials to directly support dozens of science and research investigations during Expeditions 70 and 71. NASA astronaut Jasmin Moghbeli will capture Cygnus using the station’s robotic arm, and NASA astronaut Loral O’Hara will act as backup.

After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend about six months connected to the orbiting laboratory before departing in May. Cygnus also provides the operational capability to reboost the station’s orbit.

After departure, the Kentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for spacecraft and their contents during re-entry in Earth’s atmosphere, which can be difficult to replicate in ground simulations.

Live coverage of Cygnus’ arrival will begin at 2 a.m., Wednesday, Jan. 31.

NASA astronauts Jasmin Moghbeli and Loral O'Hara will be on duty during the Cygnus cargo craft's aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.
NASA astronauts Jasmin Moghbeli and Loral O’Hara will be on duty during the Cygnus cargo craft’s aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.
NASA

Research Highlights

Scientific investigations traveling in the Cygnus spacecraft include tests of a 3D metal printer, semiconductor manufacturing, and thermal protection systems for re-entry to Earth’s atmosphere.

3D Printing in Space

Samples produced by the Metal 3D Printer prior to launch to the space station.
Samples produced by the Metal 3D Printer prior to launch to the space station.
ESA (European Space Agency)

An investigation from ESA (European Space Agency), Metal 3D Printer tests additive manufacturing or 3D printing of small metal parts in microgravity.

“This investigation provides us with an initial understanding of how such a printer behaves in space,” said Rob Postema of ESA. “A 3D printer can create many shapes, and we plan to print specimens, first to understand how printing in space may differ from printing on Earth and second to see what types of shapes we can print with this technology. In addition, this activity helps show how crew members can work safely and efficiently with printing metal parts in space.”

Results could improve understanding of the functionality, performance, and operations of metal 3D printing in space, as well as the quality, strength, and characteristics of the printed parts. Resupply presents a challenge for future long-duration human missions. Crew members could use 3D printing to create parts for maintenance of equipment on future long-duration spaceflight and on the Moon or Mars, reducing the need to pack spare parts or to predict every tool or object that might be needed, saving time and money at launch.

Advances in metal 3D printing technology also could benefit potential applications on Earth, including manufacturing engines for the automotive, aeronautical, and maritime industries and creating shelters after natural disasters.

Semiconductor Manufacturing in Microgravity

The gas supply modules and production module for Redwire's MSTIC investigation.
The gas supply modules and production module for Redwire’s MSTIC investigation.
Redwire

Manufacturing of Semiconductors and Thin-Film Integrated Coatings (MSTIC) examines how microgravity affects thin films that have a wide range of uses.

This technology could enable autonomous manufacturing to replace the many machines and processes currently used to make a wide range of semiconductors, potentially leading to the development of more efficient and higher-performing electrical devices.

Manufacturing semiconductor devices in microgravity also may improve their quality and reduce the materials, equipment, and labor required. On future long-duration missions, this technology could provide the capability to produce components and devices in space, reducing the need for resupply missions from Earth. The technology also has applications for devices that harvest energy and provide power on Earth.

Modeling Atmospheric Re-Entry

An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.
An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.
University of Kentucky

Scientists who conduct research on the space station often return their experiments to Earth for additional analysis and study. But the conditions that spacecraft experience during atmospheric reentry, including extreme heat, can have unintended effects on their contents. Thermal protection systems used to shield spacecraft and their contents are based on numerical models that often lack validation from actual flight, which can lead to significant overestimates in the size of system needed and take up valuable space and mass. Kentucky Re-entry Probe Experiment-2 (KREPE-2), part of an effort to improve thermal protection system technology, uses three capsules outfitted with different heat shield materials and a variety of sensors to obtain data on actual reentry conditions.

“Building on the success of KREPE-1, we have improved the sensors to gather more measurements and improved the communication system to transmit more data,” said Alexandre Martin, principal investigator at the University of Kentucky. “We have the opportunity to test several heat shields provided by NASA that have never been tested before, and another manufactured entirely at the University of Kentucky, also a first.”

The capsules can be outfitted for other atmospheric re-entry experiments, supporting improvements in heat shielding for applications on Earth, such as protecting people and structures from wildfires.

Remote Robotic Surgery

The surgical robot during testing on the ground before launch.
The surgical robot during testing on the ground before launch.
Virtual Incision Corporation

Robotic Surgery Tech Demo tests the performance of a small robot that can be remotely controlled from Earth to perform surgical procedures. Researchers plan to compare procedures in microgravity and on Earth to evaluate the effects of microgravity and time delays between space and ground.

The robot uses two “hands” to grasp and cut rubber bands, which simulate surgical tissue and provide tension that is used to determine where and how to cut, according to Shane Farritor, chief technology officer at Virtual Incision Corp., developer of the investigation with the University of Nebraska.

Longer space missions increase the likelihood that crew members may need surgical procedures, whether simple stiches or an emergency appendectomy. Results from this investigation could support development of robotic systems to perform these procedures. In addition, the availability of a surgeon in rural areas of the country declined nearly a third between 2001 and 2019. Miniaturization and the ability to remotely control the robot help make surgery available anywhere and anytime on Earth. 

NASA has sponsored research on miniature robots for more than 15 years. In 2006, remotely operated robots performed procedures in the underwater NASA’s Extreme Environment Mission Operations (NEEMO) 9 mission. In 2014, a miniature surgical robot performed simulated surgical tasks on the zero-g parabolic airplane.

Growing Cartilage Tissue in Space

The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).
The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).
University of Connecticut

Compartment Cartilage Tissue Construct demonstrates two technologies, Janus Base Nano-Matrix and Janus Base Nanopiece. Nano-Matrix is an injectable material that provides a scaffold for formation of cartilage in microgravity, which can serve as a model for studying cartilage diseases. Nanopiece delivers an RNA (ribonucleic acid)-based therapy to combat diseases that cause cartilage degeneration.

Cartilage has a limited ability to self-repair and osteoarthritis is a leading cause of disability in older patients on Earth. Microgravity can trigger cartilage degeneration that mimics the progression of aging-related osteoarthritis but happens more quickly, so research in microgravity could lead to faster development of effective therapies. Results from this investigation could advance cartilage regeneration as a treatment for joint damage and diseases on Earth and contribute to development of ways to maintain cartilage health on future missions to the Moon and Mars.

Cargo Highlights

SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station

NASA's Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.
NASA’s Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.
NASA

Hardware  

  • Hydrogen Dome Assembly includes all  hydrogen and oxygen electrolysis replacement components within the International Space Station’s Oxygen Generation Assembly. These items are contained in a sub-ambient dome maintained at near vacuum pressure, designed to contain an explosion or fire in the electrolysis cell stack during operation. The dome provides a second barrier to protect against cabin air internal leakage and external leakage into the rack environment, and is pressurized with nitrogen gas for launch. This will launch as an  on-orbit spare.
  • Ion Exchange Bed — The ion exchange bed replacement unit consists of a pair of tubes in series containing ion exchange resins, which remove organic acids from the catalytic reactor effluent, and microbial check valve resin, which injects iodine into the water as a biocide agent. This will launch  as an on-orbit spare.
  • Catalytic Reactor — The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This will launch as an on-orbit spare.
  • Biocide Maintenance Canister — The Internal Thermal Control System Coolant Maintenance Assembly is designed to administer o-phthalaldehyde, a biocide used to purify the internal cooling loops in the Destiny laboratory, and the Harmony, Tranquility, Columbus, and Japanese Experiment Modules, to prevent the growth of microorganisms in the thermal control system. This unit will replace the current one installed in the laboratory.
  • Cylinder Flywheel — The ARED (Advanced Resistive Exercise Device) cylinder-flywheel assemblies provide the resistive loads for astronaut anaerobic exercise. The cylinder flywheels impart inertial forces to simulate Earth’s gravity during exercise.
  • International Space Station Roll Out Solar Array Modification Kit 7 – This upgrade kit consists of upper, mid, and lower struts (one each for left and right), a backbone, brackets, and support hardware for the new solar panels. This is the third in series of four modification kits needed to support the installation of the fourth set of upgraded solar arrays. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power.
  • Urine Processor Assembly Pressure Control and Pump Assembly — The assembly evacuates the urine distillation assembly at startup and periodically purges non-condensable gases and water vapor and pumps them to the separator plumbing assembly. The purge pump housing and pressure control and pump assembly manifolds are liquid cooled to promote steam condensation, thereby reducing the volume of the purge gas. All these systems make up the system used to covert urine to drinking water.
  • Collection Packet and Adapter — Required for minimal, nominal water microbial sampling. In-flight water quality assessment is needed to assure that water of acceptable, defined quality will be available aboard the space station.

Watch and Engage

Live coverage of the launch from Cape Canaveral Space Force Station in Cape Canaveral, Florida, will air on NASA TV, NASA+ and the agency’s website. Live coverage will begin at 12:15 p.m.

Live coverage of Cygnus’ rendezvous and capture at the space station will begin at 3:35 a.m. Jan. 31. Read more about how to watch and engage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Launch
    • By NASA
      Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Stations’ Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.Credit: NASA NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23, will deliver more than 11,000 pounds of science and supplies to the International Space Station. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.

      The Cygnus XL will launch on a SpaceX Falcon 9 rocket from the Cape Canaveral Space Force Station in Florida.  Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading. Stream live launch and arrival coverage on NASA+, Amazon Prime, YouTube.

      Mission Infographics

      NASA’s Northrop Grumman 23 commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.NASA NASA’s Northrop Grumman 23 commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA NASA selected William “Willie” McCool as an astronaut in 1996. McCool flew as a pilot on STS-107, his first mission. The STS-107 crew, including McCool, died on February 1, 2003, when space shuttle Columbia was lost during reentry over east Texas at about 9 a.m. EST, 16 minutes prior to the scheduled touchdown and NASA’s Kennedy Space Center. NASA’s Northrop Grumman 23 spacecraft is named in his honor.NASA NASA astronauts Jonny Kim and Zena Cardman will be on duty during the Cygnus spacecraft’s approach and rendezvous. Kim will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Cardman monitors the vehicle’s arrival.NASA Mission Hardware

      IDA Planar Reflector – This is a reflective element used by visiting spacecraft during docking. The spacecraft bounces a laser off the reflector to compute relative range, velocity, and attitude on approach to the International Space Station. Due to degradation found on the installed reflector, this unit will launch to support a future spacewalk to replace the damaged reflector.

      Urine Processing Assembly (UPA) Distillation Assembly – The urine processor on the space station uses filtration and distillation to separate water from wastewater to produce potable water. This unit is launching as a spare.

      Reactor Health Sensor – Part of the Environmental Control and Life Support System – Water Processing Assembly, includes two sensors with inlet and outlet ports to measure reactor health. This unit is being launched as a spare.

      Pressure Management Device – This is an intravehicular activity system for performing pressurization and depressurization of the space station vestibules between the space station hatch and the hatch of a visiting spacecraft or other module, like the NanoRacks Airlock. During depressurization, most of the air will be added to the space station cabin air to save the valuable resource.

      Air Selector Valve – This electro-mechanical assembly is used to direct airflow through the Carbon Dioxide Removal Assembly. Two units are launching as spares.

      Major Constituent Analyzer Mass Spectrometer Assembly – This assembly monitors the partial pressure levels of nitrogen, oxygen, hydrogen, methane, water vapor, and carbon dioxide aboard station. This unit is launching as a contingency spare.

      Major Constituent Analyzer Mass Sample/Series Pump Assembly – This contains plumbing and a pair of solenoid valves to direct sample gas flow to either of the redundant sample pumps. It draws sample gas from the space station’s atmosphere into the analyzer. This unit is launching as a contingency spare.

      Major Constituent Analyzer Sample Distribution Assembly – This isolates the gas sample going to the Mass Spectrometer Assembly. The purpose is to distribute gas samples throughout the analyzer. This unit is launching as a contingency spare.

      Charcoal Bed – The bed allows the Trace Contaminant Control System to remove high molecular weight contaminants from the station’s atmosphere. This unit is launching as a spare.

      Common Cabin Air Assembly Heat Exchanger – This assembly controls cabin air temperature, humidity, and airflow aboard the space station. This unit is launching as a spare.

      Sequential Shunt Unit – This regulates the solar array wing voltage when experiencing high levels of direct sunlight; in doing so, it provides usable power to the station’s primary power system. This unit is launching as a spare.

      Solid State Lighting Assembly – This is a specialized internal lighting assembly aboard station. NASA will use one lighting assembly to replace a failed unit and will keep the others as spares.

      Remote Power Control Module Type V – This module distributes 120V/DC electrical power and provides current-limiting and fault protection to secondary loads aboard the orbiting laboratory. This module is launching as a spare.

      Treadmill Isolator Assembly – The Upper, X, Y, and Z Isolator Assemblies are launching as spares for the space station’s treadmill, where they work together to reduce vibration and force transfer when astronauts are running.

      Pump Fan Motor Controller – The controller is an electronic controller to modulate the power to the motor windings, which are coils of conductive wire that are wrapped around its core carrying electric current to drive the motor. Windings are commonly used in household appliances, cars (power steering), pumps, and more.

      Quick Don Mask Assembly – This mask is used by the crew, along with the Pre-Breath Assembly, in emergency situations. This unit is launching to replace a unit aboard station.

      Anomaly Gas Analyzer – This analyzer senses various gases, like oxygen, carbon dioxide, carbon monoxide, ammonia, and others, along with cabin pressure, water vapor and temperature. Two units are launching as an upgrade to the current analyzer system used on board.

      Nitrogen, Oxygen Resupply Maintenance Kit – One tank of nitrogen and one tank of oxygen used for gas replenishment aboard the space station are launching to maintain gas reserves.

      Crew and Equipment Translation Aid Luminaire – This is a lighting unit used aboard station to illuminate the astronauts’ equipment cart and surrounding work areas during spacewalks.


      View the full article
    • By NASA
      Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Station’s Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.Credit: NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 6:11 p.m. EDT, Sunday, Sept. 14, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23.
      Watch the agency’s launch and arrival coverage on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      Filled with more than 11,000 pounds of supplies, the Northrop Grumman Cygnus XL spacecraft, carried on a SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.
      Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL on Wednesday, Sept. 17, before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading.
      Highlights of space station research and technology demonstrations, facilitated by delivery aboard this Cygnus XL, include materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      Media interested in speaking to a science subject matter expert should contact Sandra Jones at: sandra.p.jones@nasa.gov. A copy of NASA’s media accreditation policy is available on the agency’s website.
      The Cygnus XL spacecraft is scheduled to remain at the orbiting laboratory until March before it departs and burns up in the Earth’s atmosphere. Northrop Grumman has named the spacecraft the S.S. William “Willie” McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 10:
      1 p.m. – International Space Station National Laboratory Science Webinar with the following participants:
      Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Phillip Irace, science program director, International Space Station National Laboratory Paul Westerhoff, regents professor, School of Sustainable Engineering and the Built Environment, Arizona State University Robert Garmise, director of formulation development; exploratory biopharmaceuticals, Bristol Myers Squibb Joel Sercel, founder and CEO, TransAstra Corporation and Mike Lewis, senior vice president, customer innovation, Voyager Technologies Mohammad Kassemi, research professor, Case Western University Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
      The webinar will be recorded and shared to the International Space Station National Lab’s YouTube channel following the event. Ask questions in advance using social accounts @ISS_CASIS and @Space_Station.
      Friday, Sept 12
      11:30 a.m. – Prelaunch media teleconference with the following participants:
      Dina Contella, deputy manager, NASA’s International Space Station Program Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Ryan Tintner, vice president, Civil Space Systems, Northrop Grumman Jared Metter, director, Flight Reliability, SpaceX Media who wish to participate by phone must request dial-in information by 5 p.m., Thursday, Sept. 11, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov.
      Audio of the teleconference will stream live on the agency’s website and YouTube.

      Sunday, Sept. 14:
      5:50 p.m. – Launch coverage begins on NASA+ and Amazon Prime
      6:11 p.m. – Launch
      Wednesday, Sept. 17:
      5 a.m. – Arrival coverage begins on NASA+ and Amazon Prime
      6:35 a.m. – Capture
      8 a.m. – Installation coverage begins on NASA+ and Amazon Prime
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 5:50 p.m. on Sept. 14, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:
       
      X: @NASA, @NASASpaceOps, @NASAKennedy, @Space_Station, @ISS_CASIS
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 08, 2025 EditorLauren E. LowLocationNASA Headquarters Related Terms
      Northrop Grumman Commercial Resupply Commercial Resupply International Space Station (ISS) ISS Research View the full article
    • By NASA
      3 Min Read NASA Seeks Industry Input on Next Phase of Commercial Space Stations
      The aurora australis appears over the Earth in this photograph taken from the International Space Station as it orbited 269 miles above the Indian Ocean southwest of Australia. Credits: NASA NASA is requesting feedback from American companies on the next phase of its commercial space stations strategy to ensure a seamless transition of activities in low Earth orbit from the International Space Station.
      The agency released a draft Phase 2 Announcement for Partnership Proposals (AFPP) Friday, asking for feedback from industry partners by 1 p.m. EDT Friday, Sept. 12. NASA will hold an informational industry briefing on Monday, Sept. 8, to provide a top-level summary of the documents and expectations.
      Under the direction of acting NASA Administrator Sean Duffy, the agency reassessed the commercial space stations acquisition strategy to ensure mission continuity, affordability, and national alignment, and to reduce the potential for a gap of a crew-capable platform in low Earth orbit.
      “NASA has led in low Earth orbit for 25 years and counting. Now, as we prepare for deorbiting the International Space Station in 2030, we’re calling on our commercial space partners to maintain this historic human presence,” Duffy said. “The American space industry is booming. Insight from these innovative companies will be invaluable as we work to chart the next phase of commercial space stations.”
      In Phase 2, NASA intends to support industry’s design and demonstration of commercial stations through multiple funded Space Act Agreements, selected through a full and open competition.
      “NASA is committed to continuing our partnership with industry to ensure a continuity in low Earth orbit,” said Angela Hart, manager, Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston. “The work done under our Phase 1 contracts and agreements have put us in a prime position to be successful for this next funded Space Act Agreement phase. By leveraging these agreements, we provide additional flexibility to our commercial partners to define the best path forward to provide NASA a safe and affordable crewed demonstration.”
      The Phase 2 agreements are expected to include funded milestones leading to critical design review readiness and an in-space crewed demonstration of four crew members for a minimum of 30 days. Agreements are expected to include up to a five-year period of performance.
      The agency’s phased approach will culminate in a follow-on Phase 3 using Federal Acquisition Regulation-based contract(s) to purchase station services through a full and open competition. This final phase will also provide formal design acceptance and certification, ensuring the commercial stations meet NASA’s safety requirements.
      NASA remains committed to fostering innovation and collaboration within the American space industry.
      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on the next step in humanity’s exploration of the solar system while also continuing to use low Earth orbit as an ideal environment for training and a proving ground for Artemis missions to the Moon and Mars.
      Learn more about commercial space stations at:
      https://www.nasa.gov/commercialspacestations
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Commercial Space Stations
      Commercial Space News
      Humans In Space
      View the full article
    • By NASA
      Science Launching on Northrop Grumman's 23rd Cargo Resupply Mission to the Space Station
  • Check out these Videos

×
×
  • Create New...