Jump to content

Recommended Posts

Posted
low_STSCI-H-p-0621a-k-1340x520.png

Explore the world of black holes in an award-winning Web site created by a team led by Roeland van der Marel, an astronomer at the Space Telescope Science Institute in Baltimore, Md. The interactive Web site, called "Black Holes: Gravity's Relentless Pull," rescues black holes from the realm of science fiction and puts them back into the domain of science.

The Web site won the top prize for 2005 in the Pirelli INTERNETional Award competition, the first international multimedia contest for the communication of science and technology on the Internet.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Washington State Student Wins 2025 NASA Art Contest
      “My Wonders with You” by Dahyun Jung, 2025 NASA Student Art Contest grand prize winner Credits: NASA/Dahyun Jung A Washington state high school student with a passion for art, space exploration, and a curiosity about the possibility of life on other planets earned the grand prize for the 2025 NASA Student Art Contest.
      Dahyun Jung’s winning piece, titled “My Wonders with You,” shows a child seated on the roof of a barn, their arm draped around a dog, watching a space shuttle blast off in the distance. The two are joined by three extraterrestrial beings that also watch in awe. Jung was a high school senior during the submission period for the 2025 competition, which was December 1 through December 31, 2024. The theme for the 2025 art contest was “Our Wonder Changes the World.”
      “My Wonders with You” by Dahyun Jung, 2025 NASA Student Art Contest grand prize winner
      Credit: NASA/Dahyun JungNASA/Dahyun Jung “The theme immediately sparked memories of the moment I first saw a NASA spacecraft launch into space,” Jung said. “That experience filled me with awe and endless questions—especially about how aliens might view our efforts to explore the cosmos. I began imagining what future space missions might look like if we ever made contact with extraterrestrial life. That was the moment everything clicked—the exact moment when imaginations started to fill up the tiny world in my head. I knew exactly what I wanted to draw!”
      Jung said art and crafting have been a special part of her life since childhood. She enjoys using a variety of materials to create everything from drawings and paintings to keychains and crochet dolls.
      “I’ve always loved drawing, but it was in middle school that I really began to delve into it more deeply,” Jung said. “I see everything that passes through my hands as a form of art.”
      I see everything that passes through my hands as a form of art.
      Dahyun Jung
      2025 NASA Student Art Contest grand prize winner
      “A Marsbulous Future” by Chloe Ji, 2025 NASA Student Art Contest First Place Winner, 1st Grade Division
      Credit: NASA/Chloe JiNASA/Chloe Ji Jung was one of more than 2,300 kindergarten through 12th grade students from across the United States and its territories who participated in the 2025 art contest, a record-breaking number. Kristina Cors, art contest coordinator at NASA’s Langley Research Center in Hampton, Virginia, said, “This contest gives the students a way to connect their passion for art with science, technology, engineering, and mathematics (STEM) and hopefully inspires them to continue exploring those connections throughout their lives.”
      Jung is no stranger to the art contest. She said she first participated in 2022.
      “Returning to the contest in 2025 felt both nostalgic and thrilling as I came back with improved techniques, more experience, and a fresh new idea that fit this year’s theme,” she said.
      Jung used Procreate, a digital illustration and painting app, to create her award-winning work.
      “For this piece, I used my customized brush in Procreate,” Jung said. “The biggest merit of using a digital platform for drawing is the variety of textured brushes they offer. They allowed me to vividly illustrate various elements—like the sky, the rocket’s exhaust plume, hair, and roof—each with its own texture and detail.”
      Dahyun Jung, grand prize winner of the 2025 NASA Student Art Contest, holds her winning piece “My Wonders with You.”
      Credit: NASA/Dahyun JungNASA/Dahyun Jung Jung’s artwork brought to life her own enthusiasm regarding NASA’s work advancing space exploration, aeronautics, and science.
      “I’ve always been fascinated by NASA’s commitment to pushing boundaries—especially in space exploration,” Jung said. “Space feels like an undiscovered world, full of endless possibilities, but only a few have had the chance to access it. In many ways, NASA’s work mirrors how I always push creative boundaries in my own art. I’ve always dreamed of traveling to space, and it’s that sense of wonder that inspired my piece.”
      Jung said she hopes her artwork can help to inspire awe and stir imagination in others.
      “Changing the World” by Jane Lee, 2025 NASA Student Art Contest First Place Winner, 8th Grade Division
      Credit: NASA/Jane LeeNASA/Jane Lee “I want my artwork to be the starting point of all wonders—a spark that takes people back to their childhood, when dreams were bold and limitless,” Jung said. “I hope it rekindles that sense of passion, whatever it may be, and encourages others to dare to dream again.
      To view a complete list of winners by grade, please click here.
      To view all 2025 art contest entries, please click here.

      Brittny McGraw
      NASA Langley Research Center
      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center

      Share
      Details
      Last Updated Aug 25, 2025 Related Terms
      Langley Research Center General Explore More
      1 min read NASA Implementation of Executive Order 14303
      Article 2 hours ago 3 min read Lindy Garay: Supporting Space Station Safety and Success
      Article 6 hours ago 3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Written by Michael Allen
      An international team of astronomers using NASA’s IXPE (Imaging X-ray Polarimetry Explorer), has challenged our understanding of what happens to matter in the direct vicinity of a black hole.
      With IXPE, astronomers can study incoming X-rays and measure the polarization, a property of light that describes the direction of its electric field.
      The polarization degree is a measurement of how aligned those vibrations are to each other. Scientists can use a black hole’s polarization degree to determine the location of the corona – a region of extremely hot, magnetized plasma that surrounds a black hole – and how it generates X-rays.
      This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light. In this depiction, the corona can be seen as a purple haze floating above the underlying accretion disk, and extending slightly inside of its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it. NASA/Caltech-IPAC/Robert Hurt In April, astronomers used IXPE to measure a 9.1% polarization degree for black hole IGR J17091-3624, much higher than they expected based on theoretical models.
      “The black hole IGR J17091-3624 is an extraordinary source which dims and brightens with the likeness of a heartbeat, and NASA’s IXPE allowed us to measure this unique source in a brand-new way.” said Melissa Ewing, the lead of the study based at Newcastle University in Newcastle upon Tyne, England.
      In X-ray binary systems, an extremely dense object, like a black hole, pulls matter from a nearby source, most often a neighboring star. This matter can begin to swirl around, flattening into a rotating structure known as an accretion disc.
      The corona, which lies in the inner region of this accretion disc, can reach extreme temperatures up to 1.8 billion degrees Fahrenheit and radiate very luminous X-rays. These ultra-hot coronas are responsible for some of the brightest X-ray sources in the sky.
      Despite how bright the corona is in IGRJ17091-364, at some 28,000 light-years from Earth, it remains far too small and distant for astronomers to capture an image of it.
      “Typically, a high polarization degree corresponds with a very edge-on view of the corona. The corona would have to be perfectly shaped and viewed at just the right angle to achieve such a measurement,” said Giorgio Matt, professor at the University of Roma Tre in Italy and a co-author on this paper. “The dimming pattern has yet to be explained by scientists and could hold the keys to understanding this category of black holes.”
      The stellar companion of this black hole isn’t bright enough for astronomers to directly estimate the system’s viewing angle, but the unusual changes in brightness observed by IXPE suggest that the edge of the accretion disk was directly facing Earth.
      The researchers explored different avenues to explain the high polarization degree.
      In one model, astronomers included a “wind” of matter lifted from the accretion disc and launched away from the system, a rarely seen phenomenon. If X-rays from the corona were to meet this matter on their way to IXPE, Compton scattering would occur, leading to these measurements.
      Fast Facts
      Polarization measurements from IXPE carry information about the orientation and alignment of emitted X-ray light waves. The high the degree of polarization, the more the X-ray waves are traveling in sync. Most polarization in the corona come from a process known as Compton scattering, where light from the accretion disc bounces off the hot plasma of the corona, gaining energy and aligning to vibrate in the same direction. “These winds are one of the most critical missing pieces to understand the growth of all types of black holes,” said Maxime Parra, who led the observation and works on this topic at Ehime University in Matsuyama, Japan. “Astronomers could expect future observations to yield even more surprising polarization degree measurements.”
      Another model assumed the plasma in the corona could exhibit a very fast outflow. If the plasma were to be streaming outwards at speeds as high as 20% the speed of light, or roughly 124 million miles per hour, relativistic effects could boost the observed polarization.
      In both cases, the simulations could recreate the observed polarization without a very specific edge-on view. Researchers will continue to model and test their predictions to better understand the high polarization degree for future research efforts.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Share
      Details
      Last Updated Aug 12, 2025 EditorBeth RidgewayContactCorinne Edmistoncorinne.m.edmiston@nasa.govLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Chandra
      Space Telescope
      IXPE News
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      Imaging X-ray Polarimetry Explorer (IXPE)
      The Imaging X-ray Polarimetry Explorer (IXPE) is a space observatory built to discover the secrets of some of the most…
      View the full article
    • By NASA
      Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory teamed up to identify a new possible example of a rare class of black holes, identified by X-ray emission (in purple) in this image released on July 24, 2025. Called NGC 6099 HLX-1, this bright X-ray source seems to reside in a compact star cluster in a giant elliptical galaxy. These rare black holes are called intermediate-mass black holes (IMBHs) and weigh between a few hundred to a few 100,000 times the mass of our Sun.
      Learn more about IMBHs and what studying them can tell us about the universe.
      Image credit: Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI)
      View the full article
    • By NASA
      This view of tracks trailing NASA’s Curiosity rover was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter.NASA/JPL-Caltech NASA’s Curiosity rover captured a view of its tracks on July 26, 2025. The robotic scientist is now exploring a region of lower Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain. The pale peak of the mountain can be seen at top right; the rim of Gale Crater, within which the mountain sits, is on the horizon at top left. Curiosity touched down on the crater floor 13 years ago.
      Recently, the rover rolled into a region filled with boxwork formations. Studying these formations could reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out. Read more about the detective work Curiosity is doing on Mars.
      Image credit: NASA/JPL-Caltech

      View the full article
    • By NASA
      1 min read
      NASA’s Black Marble: Stories from the Night Sky
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us Viewed from space, Earth at night tells endless stories. Using satellite data, we can track population growth, natural disaster damage, cultural celebrations, and even space weather. Studying these glowing patterns helps us understand human activity, respond to disasters, and witness a changing world.

      Original Video and Assets

      Share








      Details
      Last Updated Aug 04, 2025 Related Terms
      Earth Video Series Explore More
      4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play


      Article


      3 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      3 weeks ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
  • Check out these Videos

×
×
  • Create New...