Members Can Post Anonymously On This Site
Shrinking Moon Causing Moonquakes and Faults Near Lunar South Pole
-
Similar Topics
-
By NASA
Teams at NASA’s Kennedy Space Center in Florida participate in the first joint integrated launch countdown simulation for Artemis I inside Firing Room 1 of the Launch Control Center on July 8, 2021. Seen at the top of the room is Charlie Blackwell-Thompson (right), launch director.Credit: NASA/Ben Smegelsky As four astronauts venture around the Moon on NASA’s Artemis II test flight in 2026, many people will support the journey from here on Earth. Teams directing operations from the ground include the mission management team, launch control team, flight control team, and the landing and recovery team, each with additional support personnel who are experts in every individual system and subsystem. The teams have managed every aspect of the test flight and ensure NASA is prepared to send humans beyond our atmosphere and into a new Golden Age of innovation and exploration.
Mission management team
Reviews of mission status and risk assessments are conducted by the mission management team, a group of 15 core members and additional advisors. Amit Kshatriya, NASA’s deputy associate administrator, Moon to Mars Program, will serve as the mission management team chair for the test flight.
Two days prior to launch, the mission management team will assemble to review mission risks and address any lingering preflight concerns. With more than 20 years of human spaceflight experience, Kshatriya will conduct polls at key decision points, providing direction for the relevant operations team. If circumstances during the flight go beyond established decision criteria or flight rules outlined ahead of the mission, the team will assess the situation based on the information available and decide how to respond.
Matt Ramsey, serving as the Artemis II mission manager, will oversee all elements of mission preparedness prior to the mission management team assembly two days before launch and serve as deputy mission management team chair throughout the mission. With more than two decades of experience at NASA, Ramsey managed the SLS (Space Launch System) Engineering Support Center for Artemis I.
Launch control team
The launch control team coordinates launch operations from NASA’s Kennedy Space Center in Florida. Charlie Blackwell-Thompson serves as the agency’s Artemis launch director, responsible for integrating and coordinating launch operations for the SLS, Orion, and Exploration Ground Systems Programs, including developing and implementing plans for countdown, troubleshooting, and timing.
Two days before liftoff, when the countdown for launch begins, Blackwell-Thompson’s team will begin preparations for launch from their console positions in Firing Room 1 in Kennedy’s Launch Control Center. On the day of launch, Blackwell-Thompson and her team will manage countdown progress, propellent loading, and launch commit criteria. The criteria include standards for systems involved in launch, and the team will monitor the rocket until it lifts off from the launchpad.
Rick Henfling, flight director, monitors systems in the Flight Control Center at NASA’s Johnson Space Center in Houston.Credit: NASA Flight control team
From solid rocket booster ignition until the crew is safety extracted from the Orion capsule following splashdown in the Pacific Ocean at the end of their mission, the flight control team oversees operations from the Mission Control Center at NASA’s Johnson Space Center in Houston. Multiple flight directors will take turns leading the team throughout the 10-day mission to support operations around the clock. Jeff Radigan, bringing more than 20 years of International Space Station experience to Artemis II, will serve as lead flight director for the mission. The work for this role begins well in advance of the mission with building mission timelines; developing flight rules and procedures; leading the flight control team through simulations that prepare them for the flight test; and then helping them carry out the plan.
On launch day, the ascent flight control team will be led by Judd Frieling, an Artemis I flight director who also supported more than 20 shuttle missions as a flight controller. Frieling is responsible for overseeing the crew’s ascent to space, including performance of SLS core stage engines, solid rocket boosters, and propulsion systems from the moment of launch until the separation of Orion from the Interim Cryogenic Propulsion Stage. As Orion is propelled toward the Moon, guidance of operations will pass to the next flight director.
At the opposite end of the mission, Rick Henfling will take the lead for Orion’s return to Earth and splashdown. Orion will reenter Earth’s atmosphere at roughly 25,000 mph to about 20 mph for a parachute-assisted splashdown. Drawing from a background supporting space shuttle ascent, entry, and abort operations and 10 years as a space station flight director, Henfling and the team will monitor weather forecasts for landing, watch over Orion’s systems through the dynamic entry phase, and to ensure the spacecraft is safely shutdown before handing over operations to the recovery team.
At any point during the mission, a single voice will speak to the crew in space on behalf of all members of the flight control team: the capsule communicator, or CapCom. The CapCom ensures the crew in space receives clear and concise communication from the teams supporting them on the ground. NASA astronaut Stan Love will serve as the lead CapCom for Artemis II. Love flew aboard STS-122 mission and has acted as CapCom for more than a dozen space station expeditions. He is also part of the astronaut office’s Rapid Prototyping Lab, which played a key role in development of Orion’s displays and controls.
Landing, recovery team
Retrieval of the crew and Orion crew module will be in the hands of the landing and recovery team, led by Lili Villarreal. The team will depart San Diego on a Department of Defense ship, and head to the vicinity of the landing site several days before splashdown for final preparations alongside the U.S. Navy and DOD.
The recovery team is made up of personnel operating from the ship, land, and air to recover both astronauts and the capsule. Decision-making authority during the recovery phase of mission operations belongs to Villarreal, who served as deputy flow director for Artemis I and worked in the operations division for the space station.
The success of Artemis II will pave the way for the next phase of the agency’s campaign, landing on the lunar South Pole region on Artemis III. These teams, along with the four crew members and countless NASA engineers, scientists, and personnel, are driving humanity’s exploration on the Moon, Mars, and beyond.
View the full article
-
By European Space Agency
Image: This Copernicus Sentinel-3 image shows high concentrations of chlorophyll in yellow-green along the coastline of South Australia, near Adelaide. Chlorophyll-a is a key indicator of the presence of algae in the ocean. View the full article
-
By NASA
4 Min Read La NASA revela los finalistas del concurso de diseño de la mascota lunar de Artemis II
Read this story in English here.
La NASA ya tiene 25 finalistas para el diseño del indicador de gravedad cero de Artemis II que volará con la tripulación de esta misión alrededor de la Luna y de regreso a la Tierra el próximo año.
Los astronautas Reid Wiseman, Victor Glover y Christina Koch de la NASA, y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen pronto seleccionarán uno de los diseños finalistas para que les acompañe dentro de la nave espacial Orion como su mascota lunar.
“El indicador de gravedad cero de Artemis II será especial para la tripulación”, dijo Reid Wiseman, comandante de Artemis II. “En una nave espacial llena de equipos y herramientas complejas que mantienen viva a la tripulación en el espacio profundo, el indicador es una forma amigable y útil de resaltar el elemento humano que es tan crítico para nuestra exploración del universo. Nuestra tripulación está entusiasmada con estos diseños provenientes de muchos lugares del mundo y esperamos con interés llevar al ganador con nosotros en este viaje”.
Un indicador de gravedad cero es un pequeño peluche que típicamente viaja con la tripulación para indicar visualmente el momento en que llegan al espacio. Durante los primeros ocho minutos después del despegue, la tripulación y el indicador, que estará situado cerca de ellos, seguirán siendo presionados contra sus asientos por la gravedad y la fuerza de la subida al espacio. Cuando se apaguen los motores principales de la etapa central del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés), se eliminarán las restricciones de la gravedad, pero la tripulación seguirá atada de manera segura a sus asientos: la capacidad de flotar de su indicador de gravedad cero será la evidencia de que han llegado al espacio.
Artemis II será la primera misión en la que el público haya participado en la creación de la mascota de la tripulación.
Estos diseños, con ideas que abarcan desde versiones lunares de criaturas terrestres hasta visiones creativas sobre la exploración y el descubrimiento, fueron seleccionados entre más de 2.600 propuestas procedentes de más de 50 países, e incluyen diseños de estudiantes desde primaria a secundaria. Los finalistas representan a 10 países, entre los que están Estados Unidos, Canadá, Colombia, Finlandia, Francia, Alemania, Japón, Perú, Singapur y Gales.
Mira aquí los diseños finalistas:
Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” En marzo, la NASA anunció que buscaba propuestas de creadores de todo el mundo para el diseño de un indicador de gravedad cero que volaría a bordo de Artemis II, la primera misión tripulada de la campaña Artemis de la NASA. Se pidió a los creadores que presentaran ideas que representaran la importancia de Artemis, la misión, o la exploración y el descubrimiento, y que cumplieran con requisitos específicos de tamaño y materiales. La empresa de crowdsourcing (colaboración abierta) Freelancer sirvió como facilitadora del concurso en nombre de la NASA, a través del Laboratorio de Campeonatos de la NASA, el cual es gestionado por la Dirección de Misiones de Tecnología Espacial de la agencia.
Una vez que la tripulación haya seleccionado un diseño final, el Laboratorio de Mantas Térmicas de la NASA lo fabricará para el vuelo. El indicador estará amarrado dentro de Orion antes del lanzamiento.
La misión, que tendrá alrededor de 10 días de duración, es otro paso adelante hacia misiones en la superficie lunar y sirve como preparación para futuras misiones tripuladas a Marte de la agencia.
Mediante Artemis II, la NASA enviará astronautas a explorar la Luna para llevar a cabo descubrimientos científicos, obtener beneficios económicos y sentar las bases para las primeras misiones tripuladas a Marte.
View the full article
-
By NASA
3 Min Read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
NASA is down to 25 finalists for the Artemis II zero gravity indicator set to fly with the mission’s crew around the Moon and back next year.
Astronauts Reid Wiseman, Victor Glover, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will soon select one of the finalist designs to join them inside the Orion spacecraft as their Moon mascot.
“The Artemis II zero gravity indicator will be special for the crew,” said Reid Wiseman, Artemis II commander. “In a spacecraft filled with complex hardware to keep the crew alive in deep space, the indicator is a friendly and useful way to highlight the human element that is so critical to our exploration of the universe. Our crew is excited about these designs from across the world and we are looking forward to bringing the winner along for the ride.”
A zero gravity indicator is a small plush item that typically rides with a crew to visually indicate when they are in space. For the first eight minutes after liftoff, the crew and their indicator nearby will still be pushed into their seats by gravity, and the force of the climb into space. When the main engines of the SLS (Space Launch System) rocket’s core stage cut off, gravity’s restraints are lifted, but the crew will still be strapped safely into their seats – their zero gravity indicator’s ability to float will provide proof that they’ve made it into space.
Artemis II will mark the first time that the public has had a hand in creating the crew’s mascot.
These designs – ideas spanning from Moon-related twists on Earthly creatures to creative visions of exploration and discovery – were selected from more than 2,600 submissions from over 50 countries, including from K-12 students. The finalists represent 10 countries including the United States, Canada, Colombia, Finland, France, Germany, Japan, Peru, Singapore, and Wales.
View the finalist designs:
Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” In March, NASA announced it was seeking design ideas from global creators for a zero gravity indicator to fly aboard Artemis II, the first crewed mission under NASA’s Artemis campaign. Creators were asked to submit ideas representing the significance of Artemis, the mission, or exploration and discovery, and to meet specific size and materials requirements. Crowdsourcing company Freelancer facilitated the contest on NASA’s behalf though the NASA Tournament Lab, managed by the agency’s Space Technology Mission Directorate.
Once the crew has selected a final design, NASA’s Thermal Blanket Lab will fabricate it for flight. The indicator will be tethered inside Orion before launch.
The approximately 10-day mission is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night, ranging from 40 Kelvin (K) to 125 K while maintaining a vacuum environment. This creates a tool by which scientists and engineers can test materials, electronics, and flight hardware for future Moon and Mars missions, characterizing their behaviors at these temperatures while also validating their ability to meet design requirements.
Cryogenic engineer Adam Rice tests the Lunar Environment Structural Test Rig to simulate the thermal-vacuum conditions of the lunar night on Thursday, May 22, 2025.NASA/Jef Janis Facility Overview
The Lunar Environment Structural Test Rig (LESTR) approaches the problem of creating a simulated lunar environment by departing from typical fluid immersion or jacketed-and-chilled chamber systems. It does this by using a cryocooler to reject heat and bring the test section to any point desired by the test engineer, as low as 40 K or as high as 125 K in a vacuum environment. By combining high vacuum and cryogenic temperatures, LESTR enables safe, accurate, and cost-effective testing of materials and hardware destined for the Moon and beyond. Its modular setup supports a wide range of components — from spacesuits to rover wheels to electronics — while laying the foundation for future Moon and Mars mission technologies.
Quick Facts
LESTR is a cryogenic mechanical test system built up within a conventional load frame with the goal of providing a tool to simulate the thermal-vacuum conditions of the lunar night to engineers tasked with creating the materials, tools, and machinery to succeed in NASA’s missions.
LESTR replicates extreme lunar night environments — including temperatures as low as 40 K and high vacuum (<5×10⁻⁷ Torr) — enabling true-to-space testing without liquid cryogens. Unlike traditional “wet” methods, LESTR uses a cryocooler and vacuum system to create an environment accurate to the lunar surface. From rover wheels to spacesuits to electronics, LESTR supports static and dynamic testing across a wide range of Moon and Mars mission hardware. With scalable architecture and precision thermal control, LESTR lays critical groundwork for advancing the technologies of NASA’s Artemis missions and beyond. Capabilities
Specifications
Temperature Range: 40 K to 125 K Load Capacity: ~10 kN Vacuum Level: <5×10⁻⁷ Torr Test Volume (Cold Box Dimensions): 7.5 by 9.5 by 11.5 inches Maximum Cycle Rate: 100 Hz Time to Vacuum:10⁻⁵ Torr in less than one hour 10⁻⁶ Torr in four hours Features
Dry cryogenic testing (no fluid cryogen immersion) “Dial-a-temperature” control for precise thermal conditions Integrated optical extensometer for strain imaging Digital image correlation and electrical feedthroughs support a variety of data collection methods Native support for high-duration cyclic testing Applications
Cryogenic Lifecycle Testing: fatigue, fracture, and durability assessments Low-Frequency Vibration Testing: electronics qualification for mobility systems Static Load Testing: material behavior characterization in lunar-like environments Suspension and Drivetrain Testing: shock absorbers, wheels, springs, and textiles Textiles Testing: evaluation of spacesuits and habitat fabrics Dynamic Load Testing: up to 10 kN linear capacity, 60 mm stroke Contact
Cryogenic and Mechanical Evaluation Lab Manager: Andrew Ring
216-433-9623
Andrew.J.Ring@nasa.gov
LESTR Technical Lead: Ariel Dimston
216-433-2893
Ariel.E.Dimston@nasa.gov
Using Our Facilities
NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia. If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know.
Gallery
The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night on Friday, June 6, 2025.NASA/Steven Logan The Lunar Environment Structural Test Rig uses a cryocooler to reject heat and bring the test section as low as 40 Kelvin in a vacuum environment on Thursday, May 22, 2025.NASA/Jef Janis Keep Exploring Discover More Topics From NASA
Aeronautics Research
NASA Glenn Virtual Tours
Hubble Space Telescope (A)
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Gemini
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.