Jump to content

Recommended Posts

Posted
low_STSCI-H-p-0629a-k-1340x520.png

A pair of small moons that NASA's Hubble Space Telescope discovered orbiting Pluto now have official names: Nix and Hydra. Photographed by Hubble in 2005, Nix and Hydra are roughly 5,000 times fainter than Pluto and are about two to three times farther from Pluto than its large moon, Charon, which was discovered in 1978.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Overview Science Science Findings Juno’s Orbits Spacecraft People Stories Multimedia JunoCam Images Jupiter hosts the brightest and most spectacular auroras in the Solar System. Near its poles, these shimmering lights offer a glimpse into how the planet interacts with the solar wind and moons swept by Jupiter’s magnetic field. Unlike Earth’s northern lights, the largest moons of Jupiter create their own auroral signatures in the planet’s atmosphere — a phenomenon that Earth’s Moon does not produce. These moon-induced auroras, known as “satellite footprints,” reveal how each moon interacts with its local space environment.
      Juno capturing the marks on Jupiter of all four Galilean moons. The auroras related to each are labeled Io, Eur (for Europa), Gan (for Ganymede), and Cal (for Callisto). NASA/JPL-Caltech/SwRI/UVS team/MSSS/Gill/Jónsson/Perry/Hue/Rabia Before NASA’s Juno mission, three of Jupiter’s four largest moons, known as Galilean moons — Io, Europa, and Ganymede — were shown to produce these distinct auroral signatures. But Callisto, the most distant of the Galilean moons, remained a mystery. Despite multiple attempts using NASA’s Hubble Space Telescope, Callisto’s footprint had proven elusive, both because it is faint and because it most often lies atop the brighter main auroral oval, the region where auroras are displayed.
      NASA’s Juno mission, orbiting Jupiter since 2016, offers unprecedented close-up views of these polar light shows. But to image Callisto’s footprint, the main auroral oval needs to move aside while the polar region is being imaged. And to bring to bear Juno’s arsenal of instruments studying fields and particles, the spacecraft’s trajectory must carry it across the magnetic field line linking Callisto and Jupiter. 
      These two events serendipitously occurred during Juno’s 22nd orbit of the giant planet, in September 2019, revealing Callisto’s auroral footprint and providing a sample of the particle population, electromagnetic waves, and magnetic fields associated with the interaction. 
      Jupiter’s magnetic field extends far beyond its major moons, carving out a vast region (magnetosphere) enveloped by, and buffeted by, the solar wind streaming from our Sun. Just as solar storms on Earth push the northern lights to more southern latitudes, Jupiter’s auroras are also affected by our Sun’s activity. In September 2019, a massive, high-density solar stream buffeted Jupiter’s magnetosphere, briefly revealing — as the auroral oval moved toward Jupiter’s equator — a faint but distinct signature associated with Callisto. This discovery finally confirms that all four Galilean moons leave their mark on Jupiter’s atmosphere, and that Callisto’s footprints are sustained much like those of its siblings, completing the family portrait of the Galilean moon auroral signatures.
      An international team of scientists led by Jonas Rabia of the Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, in Toulouse, France, published their paper on the discovery, “In situ and remote observations of the ultraviolet footprint of the moon Callisto by the Juno spacecraft,” in the journal Nature Communications on Sept. 1, 2025.
      Share








      Details
      Last Updated Sep 02, 2025 Related Terms
      Auroras Callisto Juno Jupiter Jupiter Moons Keep Exploring Discover More Topics From NASA
      Jupiter: Exploration



      Jupiter



      Jupiter Moons



      Callisto


      View the full article
    • By NASA
      NASA announced 10 winning teams for its latest TechLeap Prize — the Space Technology Payload Challenge — on June 26. The winners emerged from a record-breaking field of more than 200 applicants to earn cash prizes worth up to $500,000, if they have a flight-ready unit. Recipients may also have the opportunity to flight test their technologies.
      NASA’s Biological and Physical Sciences (BPS) division is supporting the emerging space economy through challenges like TechLeap. The projects receive funding through the Commercially Enabled Rapid Space Science (CERISS) initiative, which pairs government research goals with commercial innovation.
      Two awardees’ capabilities specifically address BPS research priorities, which include conducting investigations that inform future space crops and advance precision health.  
      Ambrosia Space Manufacturing Corporation is developing a centrifuge system to separate nutrients from cell cultures — potentially creating space-based food processing that could turn algae into digestible meals for astronauts.
      Helogen Corporation is building an automated laboratory system that can run biological experiments without requiring astronaut involvement and may be able to transmit real-time data to researchers on Earth without having to wait for physical samples to return.
      “The innovations of these small- and midsize businesses could enable NASA to accelerate the pace of critical research,” says Dan Walsh, BPS’s program executive for CERISS. “It’s also an example of NASA enabling the emerging space industry to grow and thrive beyond big corporations.”
      Small Packages with Big Ambitions
      Every inch and ounce counts on a spacecraft, which means the winning teams have to think small while solving big problems.
      Commercial companies play a pivotal role in enabling space-based research — they bring fresh approaches to ongoing challenges. But space missions demand a different kind of innovation, and TechLeap teams face both time and size constraints for their experiments.
      Winners have six to nine months to demonstrate that their concepts work. That’s a significant contrast from traditional space technology development, which can stretch for years.
      The research serves a larger purpose as well. The technology helps NASA “know before we go” on longer, deep-space missions to the Moon and Mars. Understanding how technologies behave in microgravity or extreme environments can prevent costly failures when astronauts are far from Earth.
      Small investments in proof-of-concept technologies can bring in a high ROI. With the TechLeap Prize, BPS is betting that big ideas will come in small packages.
      Related Resources
      TechLeap Prize – Space Technology Payload Challenge (STPC)
      Space Technology Payload Challenge Winners
      Commercially Enabled Rapid Space Science Initiative
      View the full article
    • By NASA
      Dr. Compton J. Tucker – a senior researcher at NASA’s Goddard Space Flight Center (GSFC) – joins 149 newly elected members to the National Academy of Sciences (NAS) – see Photo. NAS is one of the highest honors in American science. Compton gave a virtual presentation at GSFC on July 21, 2025, in which he showed highlights from his 50 years of research and reflected on the honor of being selected as an NAS fellow. He admitted that he was surprised upon learning of his election in April 2025 – despite his prestigious career.
      Photo 1. Compton Tucker uses satellites to address global environmental challenges. Photo credit: Colorado State University In some ways this award brings Compton’s career full circle. He first came to GSFC as a NAS postdoc in 1975 after having earned his Bachelor’s of Science degree at Colorado State University (CSU) in 1969. He followed with his Master’s of Science degree and Ph.D. from CSU’s College of Forestry in 1973 and 1975 respectively. Two years later, he joined NASA as a civil servant. After a prestigious 48 years of public service, Compton has decided to retire in March 2025.
      Compton is a well-known pioneer in the field of satellite-based environmental analysis, using data from various U.S. Geological Survey–NASA Landsat missions and from the National Oceanographic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument, the prototype of which launched aboard the Television Infrared Observation Satellite–N (TIROS-N) in 1978, with launches continuing on NOAA and European polar orbiting satellites throughout the next 40 years. The last two AVHRR instruments, which launched on the European Organisation for the Exploitation of Meteorological Satellites’ (EUMETSAT) Meteorological Operational satellites (METOP–B and -C) in 2012 and 2018 respectively, are still operational today.
      Photo 2. Earth scientist Compton Tucker, who has studied remote sensing of vegetation at NASA Goddard for 50 years, has been elected to the National Academy of Sciences. Photo credit: Compton Tucker In his GSFC presentation, Compton described how, in the course of doing their research, he and his colleague(s) realized the original plans for AVHRR resulted in Channel 1 and 2 overlapping one another. In short, he explained that his input helped persuade NOAA management to change the design for Channel 1 of AVHRR – beginning with NOAA-7. It is fair to say that this change had a lasting impact, with 16 more AVHRR instruments (with slight modifications over time) launched over the next four decades.
      Compton’s research has focused on global photosynthesis on land (e.g., grass-dominated savannas), determined land cover (i.e., forest fragmentation, deforestation, and forest condition), monitored droughts and food security, and evaluated ecologically coupled disease outbreaks. From 2005 to 2010, he was the co-chair of two Interagency Working Groups for Observations and Land Use and Land Cover Change. Compton was active in NASA’s Space Archaeology Program, participating in ground-based radar and magnetic surveys in Turkey, particularly at Troy, the Granicus River Valley, and Gordion. Over the course of his 50-year career, he has authored or co-authored more than 400 scholarly articles that have appeared in scientific journals – and in his presentation he hinted that more might be in store after retirement.
      Compton has received numerous scientific awards and honors. He was elected to a fellow of the American Geophysical Union in 2009 and to the American Association for the Advancement of Science in 2015. He received the Senior Executive Service Presidential Rank Award for Meritorious Service (2017), the Vega Medal from the Swedish Society of Anthropology and Geography (2014), the Galathea Medal from the Royal Danish Geographical Society (2004), the William T. Pecora Award from the U.S. Geological Survey (1997), the Michael Collins Trophy for Current Achievement from the National Air and Space Museum (1993), the Henry Shaw Medal from the Missouri Botanical Garden (1992), and the Exceptional Scientific Achievement Medal from NASA (1987).
      Compton enjoyed sharing his knowledge with the next generation of scientists. He served as an adjunct professor at the University of Maryland (1994–2024) and a consulting scholar at the University of Pennsylvania Museum of Archeology and Anthropology (2005–2024).
      Congratulations to Compton on earning this prestigious – and well-earned – recognition from NAS. Best wishes to him in whatever is next on his journey.
      The National Academy of Sciences is a private, nonprofit institution that was established under a congressional charter signed by President Abraham Lincoln in 1863. It recognizes achievement in science by election to membership, and – with the National Academy of Engineering and the National Academy of Medicine – provides science, engineering, and health policy advice to the federal government and other organizations.
      View the full article
    • By Space Force
      Space Systems Command has activated two new System Deltas within the mission area of the Space Force Program Executive Officer for Space Sensing.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4584 – 4585: Just a Small Bump
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 27, 2025 — Sol 4582, or Martian day 4,582 of the Mars Science Laboratory mission — at 05:28:57 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, June 27, 2025
      We weren’t able to unstow Curiosity’s robotic arm on Wednesday because of some potentially unstable rocks under Curiosity’s wheels, but we liked the rocks at Wednesday’s location enough that we decided to spend a sol repositioning the rover so that we’d have another chance today to analyze them. The small adjustment of the rover’s position, or “bump,” as we like to call it during tactical planning, was successful, and we found ourselves in a nice stable pose this morning which allowed us to use our highly capable robotic arm to observe the rocks in front of us.
      We will be collecting APXS and MAHLI observations of two targets today. The first, “Santa Elena,” is the bumpy rock that caught our eye on Wednesday. The second, informally named “Estancia Allkamari,” is a patch of nearby sand. We’ll analyze this target to understand if and how the sand composition has changed as we’ve driven across Mount Sharp, and to better help us understand how sand may be contributing to future compositional measurements that cover mixtures of sand and rock. MAHLI and ChemCam will team up to observe a third target named “Ticatica,” which is another bumpy rock nearby that looks like it might have a dark patch on its side.
      This is the final weekend of this Martian year when temperature and relative humidity in Gale crater hit the sweet spot where conditions are right for frost to form in the pre-dawn hours. We’re taking this last opportunity to see if we can catch any evidence of frost with the ChemCam laser, shooting a sandy (and hopefully cold) portion of the ground in the pre-dawn hours on a target named “Rio Huasco.” Other activities in the plan include atmospheric monitoring, Mastcam mosaics, including a 20 x 3 mosaic of the large boxwork structures in the distance, and a short drive to the southwest to check out a rocky raised ridge.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      2 min read Clay Minerals From Mars’ Most Ancient Past?


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...