Members Can Post Anonymously On This Site
USSF announces selections for Space Strategic Technology Institute 2
-
Similar Topics
-
By Space Force
The two-week event, held at Vandenberg Space Force Base, focuses on strengthening international partnerships, enhancing operational collaboration and promoting responsible behavior in space.
View the full article
-
By NASA
6 min read
Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station
Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquafers on Earth.
Upgraded hardware being prepared at Jet Propulsion Lab for launch and install into the Cold Atom Lab on the International Space Station. The Science Module in the background enables CAL researchers to conduct atom interferometry research in Earth’s orbit. Credit: NASA/JPL-Caltech NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.
Physicists have been eager to apply atom interferometry in space, both to enable new measurements for space science and to capitalize on the extended free-fall conditions found in space. This could enable researchers to achieve unprecedented performance from these quantum sensors.
These interferometers, however, require exquisitely sensitive equipment, and they were previously considered too fragile to function for extended periods without hands-on attention. The Cold Atom Lab, which is operated remotely from Earth, has now demonstrated that it is possible to conduct atom interferometry in space. The CAL Science Team has published two papers so far documenting these experimental milestones.
Depiction of the atom interferometer (AI) setup onboard the ISS in CAL (on the right), showing the interior components of the instrument, and the path of a retro-reflected laser beam (red) inside the vacuum system. The expanded image on the left shows the beam entering the vacuum chamber through a window and between pairs of traces on the atom chip, which are used to confine and cool the atoms to ultracold temperatures. Credit: NASA/JPL-Caltech The results of the first study, published in the November 2023 issue of Nature, described the demonstration of simultaneous atom interferometry with both rubidium and potassium quantum gases for the first time in space. The dual-species atom interferometer not only exhibited robust and repeatable operation of atom interferometry in Earth orbit, but it also served as a pathfinder for future experiments that aim to use quantum gases to test the universality of free fall, a key tenet of Einstein’s theory of general relativity.
In the second study, the results of which were featured in the August 2024 issue of Nature Communications, members of the science team used the CAL atom interferometer to measure subtle vibrations of the space station and to remotely measure the frequency of the atom interferometer laser— the first time ultra-cold atoms have been used to detect changes in the surrounding environment in space. This paper also reported on the demonstration of the wave-like nature of matter persisting for the longest ever freefall time (over a tenth of a second) in space.
“Reaching these milestones was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.”
Space-based sensors that can measure gravity with high precision have a wide range of potential applications. They could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity.
The U.S.-German GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) mission is currently collecting gravity measurements using classical sensors that detect slight changes in gravity to track the movement of water and ice on Earth. A future mission using atom interferometry could provide better precision and stability, revealing even more detail about surface mass changes.
Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance that makes up about 27% of the universe, while the “regular” matter that composes planets, stars, and everything else we can see makes up only 5%. Dark energy makes up the remaining 68% of the universe and is the driver of the universe’s accelerating expansion.
“Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.”
About the size of a minifridge, the Cold Atom Lab launched to the space station in 2018 with the goal of advancing quantum science by placing a long-term facility in the microgravity environment of low Earth orbit. The lab cools atoms to almost absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study.
Quantum properties can sometimes cause atoms to act like solid objects and sometimes like waves. Scientists don’t yet entirely understand how the building blocks of matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers.
In microgravity, Bose-Einstein condensates can reach colder temperatures and can exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the CAL facility enabling precision measurements by harnessing the quantum nature of atoms.
Dual-species atom interferometry in space. (Left) Normalized population for ultracold gases of potassium (blue) and rubidium (red) in one of two output states following a simultaneous dual-species atom interferometry sequence. (Right) Correlations observed in the relative population of potassium and rubidium output states. Credit: NASA/JPL-Caltech Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact.
“I expect that space-based atom interferometry will lead to exciting new discoveries, fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and German scientists who co-authored the studies cited above.
Designed and built at the NASA Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences (BPS) Division of NASA’s Science Mission Directorate at the Agency’s headquarters in Washington DC and the International Space Station Program at NASA’s Johnson Space Center in Houston, Texas. The work carried out at the Jet Propulsion Laboratory, California Institute of Technology, was executed under a contract with the National Aeronautics and Space Administration.
Learn more about Cold Atom Lab at https://coldatomlab.jpl.nasa.gov/
Just how cold are the atoms in Cold Atom Lab? Find out at https://www.jpl.nasa.gov/news/news.php?feature=7311
To learn more about the Cold Atom Lab’s recent upgrades visit https://www.jpl.nasa.gov/news/upgrading-the-space-stations-cold-atom-lab-with-mixed-reality and https://www.jpl.nasa.gov/news/news.php?feature=7660
Project Lead: Kamal Oudrhiri, Jet Propulsion Laboratory, California Institute of Technology
Sponsoring Organization: Biological and Physical Sciences Division (BPS)
Share
Details
Last Updated May 06, 2025 Related Terms
Technology Highlights Biological & Physical Sciences Cold Atom Laboratory (CAL) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Science-enabling Technology View the full article
-
By Space Force
Guardians connected with members of Congress at a special screening of "The U.S. Space Force — America's Invisible Front Line" documentary at the U.S. Capitol Visitor Center April 30, 2025.
View the full article
-
By NASA
3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards
NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide.
The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector.
“The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.”
The following is a complete list of awardees:
University of Alaska, Fairbanks University of Alabama, Huntsville University of Arkansas, Little Rock University of Arizona University of California, San Diego University of Colorado, Boulder University of Hartford, Connecticut American University, Washington, DC University of Delaware University of Central Florida Georgia Institute of Technology University of Hawaii, Honolulu Iowa State University, Ames University of Idaho, Moscow University of Illinois, Urbana-Champaign Purdue University, Indiana Wichita State University, Kansas University of Kentucky, Lexington Louisiana State University and A&M College Massachusetts Institute of Technology Johns Hopkins University, Maryland Maine Space Grant Consortium University of Michigan, Ann Arbor University of Minnesota Missouri University of Science and Technology University of Mississippi Montana State University, Bozeman North Carolina State University University of North Dakota, Grand Forks University of Nebraska, Omaha University of New Hampshire, Durham Rutgers University, New Brunswick, New Jersey New Mexico State University Nevada System of Higher Education Cornell University, New York Ohio Aerospace Institute University of Oklahoma Oregon State University Pennsylvania State University University of Puerto Rico Brown University, Rhode Island College of Charleston, South Carolina South Dakota School of Mines & Technology Vanderbilt University, Tennessee University of Texas, Austin University of Utah, Salt Lake City Old Dominion University Research Foundation, Virginia University of Vermont, Burlington University of Washington, Seattle Carthage College, Wisconsin West Virginia University University of Wyoming Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide.
To learn more about NASA’s missions, visit: https://www.nasa.gov/
View the full article
-
By NASA
Landing on the Moon is not easy, particularly when a crew or spacecraft must meet exacting requirements. For Artemis missions to the lunar surface, those requirements include an ability to land within an area about as wide as a football field in any lighting condition amid tough terrain.
NASA’s official lunar landing requirement is to be able to land within 50 meters (164 feet) of the targeted site and developing precision tools and technologies is critically important to mission success.
NASA engineers recently took a major step toward safe and precise landings on the Moon – and eventually Mars and icy worlds – with a successful field test of hazard detection technology at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida.
A joint team from the Aeroscience and Flight Mechanics Division at NASA’s Johnson Space Center’s in Houston and Goddard Space Flight Center in Greenbelt, Maryland, achieved this huge milestone in tests of the Goddard Hazard Detection Lidar from a helicopter at Kennedy in March 2025.
NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. NASA The new lidar system is one of several sensors being developed as part of NASA’s Safe & Precise Landing – Integrated Capabilities Evolution (SPLICE) Program, a Johnson-managed cross-agency initiative under the Space Technology Mission Directorate to develop next-generation landing technologies for planetary exploration. SPLICE is an integrated descent and landing system composed of avionics, sensors, and algorithms that support specialized navigation, guidance, and image processing techniques. SPLICE is designed to enable landing in hard-to-reach and unknown areas that are of potentially high scientific interest.
The lidar system, which can map an area equivalent to two football fields in just two seconds, is a crucial program component. In real time and compensating for lander motion, it processes 15 million short pulses of laser light to quickly scan surfaces and create real-time, 3D maps of landing sites to support precision landing and hazard avoidance.
Those maps will be read by the SPLICE Descent and Landing Computer, a high-performance multicore computer processor unit that analyzes all SPLICE sensor data and determines the spacecraft’s velocity, altitude, and terrain hazards. It also computes the hazards and determines a safe landing location. The computer was developed by the Avionics Systems Division at Johnson as a platform to test navigation, guidance, and flight software. It previously flew on Blue Origin’s New Shepard booster rocket.
The NASA team prepares the Descent and Landing Computer for Hazard Detection Lidar field testing at Kennedy Space Center. NASA For the field test at Kennedy, Johnson led test operations and provided avionics and guidance, navigation, and control support. Engineers updated the computer’s firmware and software to support command and data interfacing with the lidar system. Team members from Johnson’s Flight Mechanics branch also designed a simplified motion compensation algorithm and NASA’s Jet Propulsion Laboratory in Southern California contributed a hazard detection algorithm, both of which were added to the lidar software by Goddard. Support from NASA contractors Draper Laboratories and Jacobs Engineering played key roles in the test’s success.
Primary flight test objectives were achieved on the first day of testing, allowing the lidar team time to explore different settings and firmware updates to improve system performance. The data confirmed the sensor’s capability in a challenging, vibration-heavy environment, producing usable maps. Preliminary review of the recorded sensor data shows excellent reconstruction of the hazard field terrain.
A Hazard Detection Lidar scan of a simulated hazard field at Kennedy Space Center (left) and a combined 3D map identifying roughness and slope hazards. NASA Beyond lunar applications, SPLICE technologies are being considered for use on Mars Sample Return, the Europa Lander, Commercial Lunar Payload Services flights, and Gateway. The DLC design is also being evaluated for potential avionics upgrades on Artemis systems.
Additionally, SPLICE is supporting software tests for the Advancement of Geometric Methods for Active Terrain Relative Navigation (ATRN) Center Innovation Fund project, which is also part of Johnson’s Aeroscience and Flight Mechanics Division. The ATRN is working to develop algorithms and software that can use data from any active sensor – one measuring signals that were reflected, refracted, or scattered by a body’s surface or its atmosphere – to accurately map terrain and provide absolute and relative location information. With this type of system in place, spacecraft will not need external lighting sources to find landing sites.
With additional suborbital flight tests planned through 2026, the SPLICE team is laying the groundwork for safer, more autonomous landings on the Moon, Mars, and beyond. As NASA prepares for its next era of exploration, SPLICE will be a key part of the agency’s evolving landing, guidance, and navigation capabilities.
Explore More
2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics
Article 2 hours ago 2 min read NASA Technology Enables Leaps in Artificial Intelligence
Artificial intelligence lets machines communicate autonomously
Article 2 hours ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
Article 7 hours ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.