Jump to content

Thin Film Isotope Nuclear Engine Rocket (TFINER)


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Labeled Thin film isotope nuclear engine rocket in space with sun in the background.
Graphic depiction of Thin Film Isotope Nuclear Engine Rocket (TFINER)
James Bickford

James Bickford
Charles Stark Draper Laboratory

New exciting missions, such as a rendezvous with a passing interstellar object, or a multi-target observing effort at the solar gravitational focus, require velocities that are well in excess of conventional rocketry. Exotic solar sail approaches may enable reaching the required distant localities, but are unable to then make the required propulsive maneuvers in deep space. Nuclear rockets are large and expensive systems with marginal capability to reach the location. In contrast, we propose a thin film nuclear isotope engine with sufficient capability to search, rendezvous and then return samples from distant and rapidly moving interstellar objects.

The same technology allows a gravitational lens telescope to be repointed so a single mission could observe numerous high-value targets.

The basic concept is to manufacture thin sheets of a radioactive isotope and directly use the momentum of its decay products to generate thrust. The baseline design is a ~10-micron thick Thorium-228 radioisotope film which undergoes alpha decay with a halflife of 1.9 years. The subsequent decay chain cascade produces daughter products with four additional alpha emissions that have halflives between 300ns and 3 days. A thrust is produced when one side of the thin film is coated with a ~50-micron thick absorber that captures forward emissions. Multiple “stages” consisting of longer half-life isotopes (e.g. Ac-227) can be combined to maximize the velocity over extended mission timelines.

Key differentiators of the concepts are:

• Cascading isotope decay chains (Thorium cycle) increases performance by ~500%

• Multiple ‘stages’ (materials) increases delta-V and lifetime without reducing thrust

• Thrust sheet reconfiguration enables active thrust vectoring and spacecraft maneuvers

• Substrate thermo-electrics can generate excess electrical power (e.g. ~50 kW @ eff=1%)

• A substrate beta emitter can be used for charge neutralization or to induce a voltage bias that preferentially directs exhaust emissions and/or to exploit the outbound solar wind

Leveraging 30kg of radioisotope (comparable to that launched on previous missions) spread over ~250 m^2 of area would provide more than 150 km/sec of delta-V to a 30 kg payload. Multiple such systems could be inserted into a solar escape trajectory with a single conventional launch vehicle allowing local search and rendezvous operations in the outer solar system. The system is scalable to other payloads and missions. Key advantages are:

• Ability to reach a velocity greater than 100 km/sec with spare capacity for rendezvous operations around objects outside the solar

system including options for sample return.

• Simple design based on known physics and well-known materials

• Scalable to smaller payloads (sensors) or to larger missions (e.g., telescopes)

• Novel ability to reach deep space (> 150 AU) very quickly and then continue aggressive maneuvers (> 100 km/sec) for dim object search/rendezvous and/or retargeting telescopes at the solar gravitational focus over a period of years.

2024 Phase I Selection

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Iceland is one of the most active volcanic regions in the world, but its seismic nature is part of a much broader geological history.
      In a groundbreaking discovery, scientists, supported by an ESA-funded project, have uncovered the underlying forces that forged the North Atlantic’s fiery volcanic past – shedding light on the vast geological region that spans from Greenland to western Europe, which is home to iconic natural wonders like the Giant’s Causeway in Northern Ireland. 
      View the full article
    • By NASA
      NASA/Kevin O’Brien Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. NASA NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. The Artemis campaign will explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      Four RS-25 engines, built by contractor L3Harris Technologies (formerly Aerojet Rocketdyne), help power each SLS launch, producing up to 2 million pounds of combined thrust. During the test, operators also fired engine No. 20001 up to the 111% power level, the same amount of thrust needed to launch an SLS rocket, carrying the Orion spacecraft, to orbit. The full-duration “hot fire” was the first test since NASA completed certification testing for new production RS-25 engines in 2024.
      All RS-25 engines are tested and proven flightworthy at NASA Stennis. The test was conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      NASA/Kevin O’Brien NASA’s SLS (Space Launch System) solid rocket boosters are the largest, most powerful solid propellant boosters to ever fly. Standing 17 stories tall and burning approximately six tons of propellant every second, each booster generates 3.6 million pounds of a thrust for a total of 7.2 million pounds: more thrust than 14 four-engine jumbo commercial airliners. Together, the SLS twin boosters provide more than 75 percent of the total thrust at launch. Each booster houses eight booster separation motors which are responsible for separating the boosters from the core stage during flight.
      At the top of each booster is the frustum—a truncated cone-shaped structure that, along with the nose cone, forms the aerodynamic fairing. This frustum houses four of the separation motors, while the remaining four are located at the bottom within the aft skirt.
      Image Credit: NASA/Kevin O’Brien
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the TFINER concept.NASA/James Bickford James Bickford
      Charles Stark Draper Laboratory, Inc.
      The Thin-Film Nuclear Engine Rocket (TFINER) is a novel space propulsion technology that enables aggressive space exploration for missions that are impossible with existing approaches. The concept uses thin layers of energetic radioisotopes to directly generate thrust. The emission direction of its natural decay products is biased by a substrate to accelerate the spacecraft. A single stage design is very simple and can generate velocity changes of ~100 km/s using a few kilograms of fuel and potentially more than 150 km/s for more advanced architectures.
      The propulsion system enables a rendezvous with intriguing interstellar objects such as ‘Oumuamua that are on hyperbolic orbits through our solar system. A particular advantage is the ability to maneuver in deep space to find objects with uncertainty in their location. The same capabilities also enable a fast trip to the solar gravitational focus to image multiple potentially habitable exoplanets. Both types of missions require propulsion outside the solar system that is an order of magnitude beyond the performance of existing technology. The phase 2 effort will continue to mature TFINER and the mission design. The program will work towards small scale thruster experiments in the near term. In parallel, isotope production paths that can also be leveraged for other space exploration and medical applications will be pursued. Finally, advanced architectures such as an Oberth solar dive maneuver and hybrid approaches that leverage solar sails near the Sun, will be explored to enhance mission performance.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...