Jump to content

A Revolutionary Approach to Interplanetary Space Travel: Studying Torpor in Animals for Space-health in Humans (STASH)


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Small animal standing and sleeping in someones hand. Then the same pictures in thermal view.
Graphic depiction of A revolutionary approach to interplanetary space travel: Studying Torpor in Animals for Space-health in Humans (STASH). Color images (top) and thermal images (bottom) show a model hibernation organism requiring low environmental temperatures for torpor study.
Ryan Sprenger

Ryan Sprenger
Fauna Bio Inc.

The use of non-model organisms in medical research is an expanding field that has already made a significant impact on human health. Insights gleaned from the study of unique mammalian traits are being used to develop novel therapeutic agents. The remarkable phenotype of mammalian hibernation confers unique physiologic and metabolic benefits that are being actively investigated for potential human health applications on Earth. These benefits also hold promise for mitigating many of the physical and mental health risks of space travel. The essential feature of hibernation is an energy-conserving state called torpor, which involves an active and often deep reduction in metabolic rate from baseline homeostasis. Additional potential benefits include the preservation of muscle and bone despite prolonged immobilization and protection against radiation injury. Despite this remarkable potential, the space-based infrastructure needed to study torpor in laboratory rodents does not currently exist, and hibernation in microgravity has never been studied. This is a critical gap in our understanding of hibernation and its potential applications for human spaceflight. We propose to remedy this situation through the design and implementation of STASH, a novel microgravity hibernation laboratory for use aboard the ISS. Some unique and necessary design features include the ability to maintain STASH at temperatures as low as 4°C, adjustable recirculation of animal chamber air enabling the measurement of metabolism via oxygen consumption, and measurement of real-time total ventilation, body temperature, and heart rate. The STASH unit will also feature animal chamber sizes that will accommodate the expected variety of future hibernating and non-hibernating species, boosting its applicability to a variety of studies on the ISS by enabling real-time physiological measurements. The STASH unit is being designed in collaboration with BioServe Space Technologies to be integrated into the Space Automated Biological Laboratory (SABL) unit. This will allow for the achievable and practical application of this research to advance our understanding of both hibernation and mammalian physiology in space. The short-term goals of the STASH project are novel investigations into the basic science of hibernation in a microgravity environment, laying the foundation for application of its potential benefits to human health. These include determining whether hibernation provides the expected protection against bone and muscle loss. The medium-term goals of the project begin developing translational applications of hibernation research. These include using STASH both for testing bioactive molecules that mimic the transcriptional signatures of hibernation and for evaluating methods of inducing synthetic torpor for their ability to provide similar protection. As a long-term goal, during a crewed mission to Mars, human synthetic torpor could act as a relevant countermeasure that would change everything for space exploration, mitigating or eliminating every hazard included in NASA’s RIDGE acronym for the hazards of space travel: Space Radiation, Isolation and Confinement, Distance from Earth, Gravity Fields, and Hostile/Closed Environments. Research performed using STASH will be an essential first step toward acquiring fundamental knowledge about the ability of hibernation to lessen the health risks of space. This knowledge will inform development of both biomimetic drug countermeasures and the future infrastructure needed to support torpor-enabled human astronauts engaged in interplanetary missions. We feel that STASH is the epitome of the high-risk, high-reward projects for which NIAC was established.

2024 Phase I Selection

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman emphasized the critical role of partnerships and the growing strategic importance of space during his remarks at the 2nd International AeroSpace Power Conference in Rome.

      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By European Space Agency
      Image: Part of the Italian island of Sardinia is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
  • Check out these Videos

×
×
  • Create New...