Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The International Space Station is a hub for scientific research and technology demonstration. Currently, in its third decade of human-tended operations, the orbiting lab is building on previous research to produce pivotal results while conducting cutting-edge science. Read highlights of some of the groundbreaking space station science conducted in 2023 that is benefiting humanity on Earth and preparing humans for journeys to the Moon and beyond.

Bringing Back the Benefits to People on Earth

A small white piece of cartilage is held by two metal spatulas just above the printing well of the BioFabrication Facility.
The first human knee meniscus successfully 3D bioprinted in orbit using the BioFabrication Facility.
Redwire

The first human knee meniscus was successfully bioprinted in orbit using the space station’s BioFabrication Facility. BFF-Meniscus-2 evaluates 3D printing knee cartilage tissue using bioinks and cells. Demonstration of this capability in space supports continued and expanded commercial use of the space station for fabricating tissues and organs for transplant on the ground.

On the left, NASA astronaut Jasmin Moghbeli wears a pink shirt while NASA astronaut Loral O’Hara is in a blue shirt to the right. Between them is a view of the Cold Atom Lab on the wall of the module. Both have their hair untied, floating above their heads.
NASA astronauts Jasmin Moghbeli and Loral O’Hara pose in front of the International Space Station’s Cold Atom Lab.
NASA

For the first time in space, scientists produced a quantum gas containing two types of atoms using station’s Cold Atom Laboratory. This new capability could allow researchers to study the quantum properties of individual atoms as well as quantum chemistry, which focuses on how different types of atoms interact and combine in a quantum state. This research could enable a wider range of Cold Atom Lab experiments, harnessing the facility to develop new space-based quantum technologies. Quantum tools are used in everything, from cell phones to medical devices, and could deepen our understanding of the fundamental laws of nature.

Monitoring Climate Change from Above

On Sept. 14, 2023, NASA announced that July 2023 was the hottest recorded month since 1880. The space station is helping monitor climate change by collecting data using multiple Earth-observing instruments mounted on its exterior.

At right, the Canadarm2 robotic arm maneuvers the Earth Surface Mineral Dust Source Investigation, or EMIT, after retrieving it from the trunk of the SpaceX Dragon. The station's main solar arrays are seen extending from the port truss segment in the center of the photo. Earth is in the lower background while the blackness of space covers the upper background.
The Canadarm2 robotic arm maneuvers NASA’s EMIT after retrieving it from the trunk of the SpaceX Dragon.
NASA

Since launching in 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) has detected more than surface minerals. The imaging spectrometer is now identifying point-source emissions of greenhouse gases with a proficiency that surprises even its designers. Detecting methane was not part of EMIT’s primary mission, but with more than 750 emissions sources now identified, the instrument has proven effective at spotting sources both big and small. This is an important factor in identifying “super-emitters” – sources that produce disproportionate shares of total emissions. Tracking human-caused emissions could offer a low-cost, rapid approach to reducing greenhouse gases.

The image shows the Evaporative Stress Index over the San Joaquin Valley on May 22, 2022, where many fields show high Evaporative Stress Index values that indicate low plant stress whereas low values indicate high plant stress.
Evaporative Stress Index over San Joaquin Valley, CA.
NASA

Models using NASA’s ECOSTRESS data found that photosynthesis in plants begins to fail at 116 degrees Fahrenheit (F) (46.7 degrees Celsius (C)). ECOSTRESS is helping to explore the implications of climate change within tropical rainforests. According to this study, average temperatures have increased 0.5 C per decade in some tropical regions, and temperature extremes are becoming more pronounced. It is unknown whether tropical vegetation temperatures could soon approach this threshold, but this result raises awareness of the need to mitigate climate change effects on rainforests, a primary producer of the world’s oxygen.

Studying for the Journey Beyond Low Earth Orbit

NASA now has the ability to recycle 98% of the water collected from the US segment on the space station – meeting the threshold necessary for water recovery on long-duration space exploration missions. Credit: NASA/ ScienceCasts

NASA has achieved 98% water recovery aboard the U.S. segment of the space station, a necessary milestone for space missions that venture to distant destinations. NASA uses the station to develop and test life support systems that can regenerate or recycle consumables such as food, air, and water. Ideally, life support systems need to recover close to 98% of the water that crews bring along at the start of a long journey. In 2023, the space station’s Environmental Control and Life Support System demonstrated this ability

NASA’s laser communications demonstration six-step roadmap. ILLUMA-T demonstrates two different data transfer speeds from low Earth orbit to the ground via a relay link. The links can be used to stream real-time data or for large bulk data transfers.
NASA’s Laser Communications Roadmap – proving the technology’s validity in a variety of environments.
NASA / Dave Ryan

NASA’s ILLUMA-T, a laser communications demonstration, completed its first link — a critical milestone for the agency’s first two-way laser relay system. Laser communications send and receive information at higher rates, providing spacecraft with the capability to send more data back to Earth in a single transmission. Testing operational laser communications in a variety of scenarios could refine the capability for future missions to the Moon and Mars.

NASA astronaut Frank Rubio harvests tomatoes for the Veg-05 experiment. Credit: NASA

NASA astronaut Frank Rubio completed a record-breaking science mission, spending 371 days in space. During his time in orbit, Rubio was the first astronaut to participate in a study examining how exercising with limited gym equipment affects the human body and is one of a handful of astronauts to help researchers test whether an enhanced diet can improve adaptation to life in space. Rubio’s contributions help researchers understand how spaceflight affects human physiology and psychology and prepare for long-duration missions.

UAE (United Arab Emirates) astronaut Sultan Alneyadi wears a navy sweater as he works in the Kibo laboratory module harvesting leaves from thale cress plants that are similar to cabbage and mustard. Alneyadi faces the camera with his hands still working on the Plant Habitat-03 space botany experiment.
UAE (United Arab Emirates) astronaut Sultan Alneyadi harvests leaves from thale cress plants for the Plant Habitat-03 experiment.
NASA

The completion of one of the first multi-generational plant studies aboard the space station could help researchers assess whether genetic adaptations in one generation of plants grown in space can transfer to the next. Plant Habitat-03 results could provide insight into how to grow repeated generations of crops to provide fresh food and other services on future space missions.

A sample of fabric burns inside Spacecraft Fire Experiment-IV (Saffire-IV). The sample is a composite fabric made of cotton and fiberglass and is 40 cm wide. The image appears green on the right because green LED lights are used to illuminate the sample during the burn. An orange flame sits top to bottom in the center of the image with a dark region between the orange and green areas. Bright specks on a black background to the left of the orange area show the smoldering cotton that remains on the fiberglass substrate after the flame passes
A sample of fabric burns inside an uncrewed Cygnus cargo spacecraft for the Saffire-IV experiment.
NASA

Saffire-VI (Spacecraft Fire Experiment-IV) marked the completion of a series of combustion experiments helping researchers understand the risks and behaviors of fire in space. Because flame-related experiments are difficult to conduct aboard an occupied spacecraft, Saffire (Spacecraft Fire Experiments) use the unmanned Cygnus resupply vehicle after it departs from the space station to test flammability at different oxygen levels and to demonstrate fire detection and monitoring capabilities.

Christine Giraldo
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
  • Check out these Videos

×
×
  • Create New...