Jump to content

A Look Through Time with NASA’s Lead Photographer for the James Webb Space Telescope


Recommended Posts

  • Publishers
Posted
2 Min Read

A Look Through Time with NASA’s Lead Photographer for the James Webb Space Telescope

header.jpg?w=1536
This self portrait of Chris Gunn, standing in front of NASA’s James Webb Space Telescope from inside the Goddard Space Flight Center cleanroom, was captured November 10, 2016.
Credits:
NASA/Chris Gunn

Nearly two years ago in the early morning hours of Dec. 25, NASA’s James Webb Space Telescope successfully took flight from the jungle-encircled ELA-3 launch complex at Europe’s Spaceport near Kourou, French Guiana. Following a successful deployment in space, and the precise alignment of the telescope’s mirrors and instruments, Webb began science operations nearly six months after liftoff. As the two-year anniversary of the launch aboard ESA’s (European Space Agency) Ariane 5 rocket approaches, Webb’s lead photographer Chris Gunn has remastered a selection of his favorite images from his career, including one previously unreleased image. 

The opportunity to be the visual spokesperson for a mission of this magnitude was the experience of a lifetime

Chris GUNN

Chris GUNN

NASA/GSFC Lead Photographer for Webb Telescope

 

Since the fall of 2009, Gunn has routinely worked through holidays and weekends, and has spent much of these years on the road, ensuring that the Webb telescope’s progress is visually chronicled and shared with the world. As the various parts and components of Webb began to be assembled and tested throughout the country, Gunn and his camera followed along, capturing the historic development of NASA’s premier space telescope. Though Gunn’s images display the complex nature of the telescope aesthetically, these images also serve as critical engineering bookmarks that the team routinely relied on to document that Webb’s construction was sound before launch.   

Following the launch of Webb, Gunn is now chronicling NASA’s next flagship space telescope, the Nancy Grace Roman Space Telescope.

All images below, credit NASA/Chris Gunn.  

A diverse group of people in white cleanroom suits carefully inspect a single golden faced, hexagonal mirror from the James Webb Space Telescope. Many faces all stare intently, some using flashlights, to examine the mirror surface. Reflected on the surface is the face and intense eye contact from one engineer, and the bright reflection of his flashlight shining directly at the viewer. Behind this engineer, a stainless-steel lens cap used to safely transport the mirror, nearly the size of a human body, rests on scaffolding, still attached by ropes to the crane that lifted it off the mirror moments before. In the background, gray and light blue walls lay behind several other components of Webb scattered around the cleanroom floor. To the right of the frame, a structure made of long overlapping black struts that appear like scaffolding sits on top of a lift table that is meant to safely move the structure up and down.
On Nov. 6, 2012, engineers and technicians inspected one of the first of Webb’s 18 hexagonal mirrors to arrive at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
NASA/Chris Gunn

002-mirror-cover-removal.jpg?w=2048
Inside a clean room at NASA’s Goddard Space Flight Center, on the afternoon of April 25, 2016, the James Webb Space Telescope primary mirrors were uncovered in preparation for installation of its scientific instruments.
NASA/Chris Gunn

Traveling alongside Webb as it grew and evolved, and to be able to add my signature to each photograph captured, was of course an honor, but also an immense challenge. With each image, I wanted to express the awe that I felt seeing Webb integrated right before my eyes, knowing what it was destined to shed new light on the mysteries of the cosmos.

CHRIS GUNN

CHRIS GUNN

NASA/GSFC Lead Photographer for Webb Telescope

002a-wing-folding.jpg?w=1364
NASA’s James Webb Space Telescope is shown with one of its two “wings” folded. Each wing holds three of its primary mirror segments. During this operation in the clean room at NASA Goddard, the telescope was also rotated in preparation for the folding back of the other wing. When Webb launched, both wings were stowed in this position, which enabled the mirror to fit into the launch vehicle. This image was captured July 17, 2016.
NASA/Chris Gunn

003-isim-in-ses.jpg?w=2048
Dressed in a clean room suit, NASA photographer Desiree Stover shines a light on the Space Environment Simulator’s integration frame inside the thermal vacuum chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md. This image was captured Aug. 29, 2013.

004-isim-integration.jpg?w=1526
On May 19, 2016, inside a massive clean room at NASA’s Goddard Space Flight Center, Webb’s Integrated Science Instrument Module was lowered into the Optical Telescope Element.

005-vibe-prep-gsfc.jpg?w=2048
Taken on Nov. 16, 2016, inside NASA Goddard’s largest clean room Webb’s Optical Telescope Element and Integrated Science Instrument Module – together called “OTIS” – are shrouded with a “clean tent” as the team prepared for Webb’s first vibration testing, which took place just outside the clean room.

To capture Webb in its true beauty, I employed the use of specialized lighting rigs, often setting up lights early before the start of work. Johnson Space Center’s Chamber A was an especially tough subject to shoot once Webb was inside. It required remote lights that had to be adjusted perfectly before I boarded a boom lift to make the photograph from seven stories up. It was all worth it, everyone’s hard work – just look at how well our starship is performing

Chris Gunn

Chris Gunn

NASA/GSFC Lead Photographer for Webb Telescope

006-webb-enters-chamber-a-jsc.jpg?w=1638
On June 20, 2017, Webb’s Optical Telescope Element and science instruments were loaded into the historic thermal vacuum testing facility known as “Chamber A” at NASA’s Johnson Space Center in Houston.

007-first-move-to-horiz.jpg?w=2048
On Sept. 16, 2021, Webb was ready to be shipped to the launch site in French Guiana. Before Webb could be lifted into its shipping container, engineers and technicians at Northrop Grumman in Redondo Beach, California, performed this first horizontal tilt of the fully assembled observatory.
008-last-observatory-lift-fg-.jpg?w=2048
This never-before-seen image shows engineers and technicians disassembling ground hardware after completing one of the final lifts of the Webb observatory, before being placed atop ESA’s (European Space Agency) Ariane 5 rocket in French Guiana. This image was taken Nov. 11, 2021.

009-webb-launch.jpg?w=1638
“Liftoff – from a tropical rainforest to the edge of time itself, James Webb begins a voyage back to the birth of the universe.” Arianespace’s Ariane 5 rocket launched with NASA’s James Webb Space Telescope aboard, Dec. 25, 2021, from the ELA-3 Launch Zone of Europe’s Spaceport at the Guiana Space Centre in Kourou, French Guiana.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Right click the images in this article to open a version in a new tab/window that can be zoomed or saved.

Media Contacts

Thaddeus Cesari Thaddeus.cesari@nasa.gov, Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Related Information

Webb Observatory

More Webb News

More Webb Images

Webb Mission Page

Share

Details

Last Updated
Dec 22, 2023
Editor
Stephen Sabia

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By Amazing Space
      LIVE NOW: 15th May Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE NOW: 15th May Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...