Jump to content

Going the Extra 500 miles for Alaskan River Ice


Recommended Posts

  • Publishers
Posted
2 Min Read

Going the Extra 500 miles for Alaskan River Ice

Aerial photograph of about 20 people in colorful jackets gathered on the ice
Fresh Eyes on Ice science team from the University of Alaska Fairbanks stop in the Alaska Native village of Shageluk on a community and citizen science journey of 550 mile by snow mobile.
Credits:
Photo by Amanda Byrd, UAF

Teachers and students in remote Alaskan villages have become vital NASA climate researchers. These special volunteers are so important that last year, climate scientists took an epic 550 mile snowmobile journey to collaborate with them! You can learn all about it in a new video from the Fresh Eyes on Ice project.

The researchers stopped at several remote Alaskan villages, where teachers and students at the local schools already understood why this work was so crucial. When you drive over ice-covered rivers every day—as many Alaskan residents do—tracking ice thickness is no joke. Neither is climate change.

“We knew that climate change was happening around us.” explains Joyanne Hamilton, a teacher whose students worked with the team. “Our elders here in Shageluk were talking about changes that were happening….the data they’re gathering is ultimately important to the tribe.” 

The new video features Hamilton, her students, and Fresh Eyes on Ice researchers Dr. Chris Arp, Allen Bondurant and Sarah Clement. It follows their journey along the Innoko, Kukokwim and Yukon Rivers and the Iditarod Sled Dog Trail.

Photograph of about 20 people in colorful jackets gathered on lake ice. Snowmobiles, backpacks and other equipment are nearby.
Fresh Eyes on Ice science team from the University of Alaska Fairbanks stop in the Alaska Native village of Shageluk on a community and citizen science journey of 550 mile by snow mobile.
Photo by Amanda Byrd, UAF

Do you live in Alaska or elsewhere in North America where ice forms? All you need to help out is a smartphone and NASA’s GLOBE Observer Landcover app. Your photos will be used in near-real time by river forecasters to help predict spring ice jam flooding, and by scientists to understand how ice timing and extent is changing. Join Fresh Eyes on Ice here!

Share

Details

Last Updated
Dec 21, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Acting Administrator Sean Duffy: We’re Going Back to the Moon – and Staying
    • By NASA
      NASA/Rachel Tilling Sea ice is frozen seawater that floats in the ocean. This photo, taken from NASA’s Gulfstream V Research Aircraft on July 21, 2022, shows Arctic sea ice in the Lincoln Sea north of Greenland.
      This image is the NASA Science Image of the Month for September 2025. Each month, NASA’s Science Mission Directorate chooses an image to feature, offering desktop wallpaper downloads, as well as links to related topics, activities, and games.
      Text and image credit: NASA/Rachel Tilling
      View the full article
    • By NASA
      Explore This Section Science For Educators Portable Planetarium takes… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Portable Planetarium takes Thousands of Alaskan Students on a Cosmic Adventure
      Exploring the Cosmos and Inspiring Young Minds
      From January through June 2025, the Education Outreach Office at the University of Alaska Fairbanks Geophysical Institute (GI) continued its mission of bringing science to life by delivering the magic of its portable planetarium to communities across Alaska. This year, they reached over 1,807 students, educators, and participants through engaging, interactive astronomy experiences.
      The portable planetarium is more than just a dome. It’s a getaway to curiosity, discovery and connection. Especially in Alaska’s long, cold winters, the dome offers a warm and welcoming space where learners of all ages can look up, wonder, and learn together. After experiencing the planetarium, feedback from students across the state reflects increased excitement about space, science, and their own place in the universe.
      Inside the Dome: The Presentation
      Each session begins with a warm introduction, a safety briefing, and a land acknowledgement. Participants experience constellations, planets, and space science concepts through dynamic storytelling and exciting visuals. The presentations connects ancient skywatching traditions with modern science, reminding students that long before the internet, the stars were a source of direction and knowledge. The presentation begins on Earth, exploring the State of Alaska, discussing the moon’s phases, and then, journeys outward to Mars, the last rocky planet, before reaching the gas giants. A standout moment of experience is the “Planet Walk” — an interactive journey from the Sun through the solar system. Learners leave with a new favorite word: ‘heliophysics,’ the science of the Sun and its influence on the solar system.
      People Behind the Program
      Knowledgeable presenters bring science to life with energy, empathy, and enthusiasm, engaging diverse audiences and making the event a memorable and impactful experience. Soumitra Sakhalkar, for example, is a GI graduate student researcher studying remote sensing of permafrost regions. Another presenter, Austin Smith, is a GI graduate student researcher in space physics. Several GI Communications staff members also contribute to the program’s success with logistics and technology support, crowd control and more.
      Giving Thanks
      This program is funded in part by the NASA Heliophysics Education Activation Team, which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/. The remainder of the funding was generously supported by schools and organizations requesting the planetarium program.
      One participant shares their planetary knowledge and enthusiasm after attending a planetarium program on January 28, 2025 in collaboration with Fairbanks BEST Homeschool Network. Kalee Meurlott Share








      Details
      Last Updated Aug 18, 2025 Editor NASA Science Editorial Team Related Terms
      For Educators For Kids and Students Science Activation Explore More
      3 min read NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries


      Article


      2 weeks ago
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      2 weeks ago
      5 min read Helio Highlights: July 2025
      As NASA and its partners prepare to send astronauts back to the Moon, we must…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Using data from several Earth-observing satellites, including ESA’s CryoSat and the Copernicus Sentinel-1 and Sentinel-2 missions, scientists have discovered that a huge flood beneath the Greenland Ice Sheet surged upwards with such force that it fractured the ice sheet, resulting in a vast quantity of meltwater bursting through the ice surface.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The north polar region of Jupiter’s volcanic moon Io was captured by the JunoCam imager aboard NASA’s Juno during the spacecraft’s 57th close pass of the gas giant on Dec. 30, 2023. A technique called annealing was used to help repair radiation damage to the camera in time to capture this image. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Gerald Eichstädt An experimental technique rescued a camera aboard the agency’s Juno spacecraft, offering lessons that will benefit other space systems that experience high radiation.
      The mission team of NASA’s Jupiter-orbiting Juno spacecraft executed a deep-space move in December 2023 to repair its JunoCam imager to capture photos of the Jovian moon Io. Results from the long-distance save were presented during a technical session on July 16 at the Institute of Electrical and Electronics Engineers Nuclear & Space Radiation Effects Conference in Nashville.
      JunoCam is a color, visible-light camera. The optical unit for the camera is located outside a titanium-walled radiation vault, which protects sensitive electronic components for many of Juno’s engineering and science instruments.
      This is a challenging location because Juno’s travels carry it through the most intense planetary radiation fields in the solar system. While mission designers were confident JunoCam could operate through the first eight orbits of Jupiter, no one knew how long the instrument would last after that.
      Throughout Juno’s first 34 orbits (its prime mission), JunoCam operated normally, returning images the team routinely incorporated into the mission’s science papers. Then, during its 47th orbit, the imager began showing hints of radiation damage. By orbit 56, nearly all the images were corrupted.
      The graininess and horizontal lines seen in this JunoCam image show evidence that the camera aboard NASA’s Juno mission suffered radiation damage. The image, which captures one of the circumpolar cyclones on Jupiter’s north pole, was taken Nov. 22, 2023. NASA/JPL-Caltech/SwRI/MSSS Long Distance Microscopic Repair
      While the team knew the issue may be tied to radiation, pinpointing what, specifically, was damaged within JunoCam was difficult from hundreds of millions of miles away. Clues pointed to a damaged voltage regulator that is vital to JunoCam’s power supply. With few options for recovery, the team turned to a process called annealing, where a material is heated for a specified period before slowly cooling. Although the process is not well understood, the idea is that the heating can reduce defects in the material.
      “We knew annealing can sometimes alter a material like silicon at a microscopic level but didn’t know if this would fix the damage,” said JunoCam imaging engineer Jacob Schaffner of Malin Space Science Systems in San Diego, which designed and developed JunoCam and is part of the team that operates it. “We commanded JunoCam’s one heater to raise the camera’s temperature to 77 degrees Fahrenheit — much warmer than typical for JunoCam — and waited with bated breath to see the results.”
      Soon after the annealing process finished, JunoCam began cranking out crisp images for the next several orbits. But Juno was flying deeper and deeper into the heart of Jupiter’s radiation fields with each pass. By orbit 55, the imagery had again begun showing problems. 
      “After orbit 55, our images were full of streaks and noise,” said JunoCam instrument lead Michael Ravine of Malin Space Science Systems. “We tried different schemes for processing the images to improve the quality, but nothing worked. With the close encounter of Io bearing down on us in a few weeks, it was Hail Mary time: The only thing left we hadn’t tried was to crank JunoCam’s heater all the way up and see if more extreme annealing would save us.”
      Test images sent back to Earth during the annealing showed little improvement the first week. Then, with the close approach of Io only days away, the images began to improve dramatically. By the time Juno came within 930 miles (1,500 kilometers) of the volcanic moon’s surface on Dec. 30, 2023, the images were almost as good as the day the camera launched, capturing detailed views of Io’s north polar region that revealed mountain blocks covered in sulfur dioxide frosts rising sharply from the plains and previously uncharted volcanos with extensive flow fields of lava.
      Testing Limits
      To date, the solar-powered spacecraft has orbited Jupiter 74 times. Recently, the image noise returned during Juno’s 74th orbit.
      Since first experimenting with JunoCam, the Juno team has applied derivations of this annealing technique on several Juno instruments and engineering subsystems.
      “Juno is teaching us how to create and maintain spacecraft tolerant to radiation, providing insights that will benefit satellites in orbit around Earth,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “I expect the lessons learned from Juno will be applicable to both defense and commercial satellites as well as other NASA missions.”
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency, Agenzia Spaziale Italiana, funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is at:
      https://www.nasa.gov/juno
      News Media Contact
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-091
      Share
      Details
      Last Updated Jul 21, 2025 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
      Article 2 hours ago 6 min read Meet Mineral Mappers Flying NASA Tech Out West
      Article 2 weeks ago 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...