Jump to content

NASA Stennis Internship Brings Aerospace Industry to Life


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A young woman stands in front of the near the Fred Haise Test Stand
NASA Pathways Intern Raquel Cervantes Espinosa is pictured at NASA’s Stennis Space Center near the Fred Haise Test Stand, where she worked throughout the fall semester supporting RS-25 engine testing. Cervantes Espinosa will return to NASA Stennis in the summer following the spring semester at Duke University in Durham, North Carolina.
NASA/Danny Nowlin

A first-generation student from North Carolina will return to school in January feeling more motivated and better connected to her future thanks to time invested as a NASA Pathways Intern at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.

Raquel Cervantes Espinosa, the first member of her family to attend college and a rising junior at Duke University, applied to the internship at NASA Stennis because of opportunities the site presented, such as working with large rocket engines. She admits to initially being nervous, having never traveled to Mississippi or the Gulf Coast area.

The electrical engineering major says she was welcomed with open arms. She grew fond of the diverse and highly skilled workforce that showed how her studies apply to working with NASA, which makes leaving after the fall semester bittersweet.

“It feels like NASA is really investing in me as an individual, and the people that I work with make it feel that way, too,” Cervantes Espinosa said. “I feel valued here and feel like I can grow with my career and degree studies in terms of what I want to do in the future. I really enjoyed my time at NASA Stennis during the fall and look forward to returning in the summer.”

During the fall semester, Cervantes Espinosa worked with test stand camera systems, including those in support of NASA’s certification test series of the RS-25 engine. The series will lead to production of updated engines that will help power future Artemis missions to the Moon and beyond on the SLS (Space Launch System) rocket.

“Raquel had a great first semester as a Pathways Intern learning about various electrical and mechanical systems,” said David Carver, deputy branch chief of the Electrical Operations Branch at NASA Stennis. “Her shining accomplishment for the semester was the new test operations video system that she helped design and bring online. The system will provide test engineers with new insight into the operation and health of critical propulsion systems. I look forward to seeing what she accomplishes in the future.”

The thermal visual cameras set up by Cervantes Espinosa at the Fred Haise Test Stand, where RS-25 hot fires take place, help ensure safe operations by allowing engineers to monitor key areas of the test stand, such as the liquid oxygen stalls and hydrogen systems. The cameras can also identify potential gas leaks not seen with the naked eye. Additionally, Cervantes Espinosa had the opportunity to analyze data and work on instruments that are used on the RS-25 engine.

“A lot of the experience I’m getting from working at NASA Stennis, a lot of the stuff I’m learning now, is really shaping how I see engineering differently than I used to,” she said.

The Duke student says one key takeaway from the fall semester was learning beyond electrical engineering and understanding how her physics minor can be applied in the aerospace industry – an industry she now wants to join following graduation.

On pace to graduate in 2026, Cervantes Espinosa said it can be challenging at times in unfamiliar territory, whether as an intern at NASA Stennis or as a first-generation engineering student.

“I would encourage other first-generation students to keep your head up and keep going,” Cervantes Espinosa said. “It sounds very cliché, but I think it’s really accurate for people like me and a lot of my friends who are first-generation students in engineering and beginning to immerse ourselves into the workforce and see what we need to do. Keep your head up, keep going, and really take advantage of such opportunities because they are out there, and people want the best for you and want to invest in you. You just have to go and seize the opportunity.”

The NASA Pathways Intern Program opens in the spring and fall each year with job postings on USAJobs.gov. The application windows open two times each year – typically around February and September.

For information about the NASA Pathways program, visit:

NASA Careers: Pathways – NASA

Social Media

Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #NASAStennis #Pathways #Artemis. Follow and tag these accounts:

Share

Details

Last Updated
Dec 21, 2023
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Installation
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s been 30 years since the discovery of the first planet around another star like our Sun. With every new discovery, scientists move closer to answering whether there are other planets like Earth that could host life as we know it. NASA/JPL-Caltech The milestone highlights the accelerating rate of discoveries, just over three decades since the first exoplanets were found.
      The official number of exoplanets — planets outside our solar system — tracked by NASA has reached 6,000. Confirmed planets are added to the count on a rolling basis by scientists from around the world, so no single planet is considered the 6,000th entry. The number is monitored by NASA’s Exoplanet Science Institute (NExScI), based at Caltech’s IPAC in Pasadena, California. There are more than 8,000 additional candidate planets awaiting confirmation, with NASA leading the world in searching for life in the universe.
      See NASA's Exoplanet Discoveries Dashboard “This milestone represents decades of cosmic exploration driven by NASA space telescopes — exploration that has completely changed the way humanity views the night sky,” said Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters in Washington. “Step by step, from discovery to characterization, NASA missions have built the foundation to answering a fundamental question: Are we alone? Now, with our upcoming Nancy Grace Roman Space Telescope and Habitable Worlds Observatory, America will lead the next giant leap — studying worlds like our own around stars like our Sun. This is American ingenuity, and a promise of discovery that unites us all.”
      Scientists have found thousands of exoplanets (planets outside our solar system) throughout the galaxy. Most can be studied only indirectly, but scientists know they vary widely, as depicted in this artist’s concept, from small, rocky worlds and gas giants to water-rich planets and those as hot as stars. NASA’s Goddard Space Flight Center The milestone comes 30 years after the first exoplanet was discovered around a star similar to our Sun, in 1995. (Prior to that, a few planets had been identified around stars that had burned all their fuel and collapsed.) Although researchers think there are billions of planets in the Milky Way galaxy, finding them remains a challenge. In addition to discovering many individual planets with fascinating characteristics as the total number of known exoplanets climbs, scientists are able to see how the general planet population compares to the planets of our own solar system.
      For example, while our solar system hosts an equal number of rocky and giant planets, rocky planets appear to be more common in the universe. Researchers have also found a range of planets entirely different from those in our solar system. There are Jupiter-size planets that orbit closer to their parent star than Mercury orbits the Sun; planets that orbit two stars, no stars, and dead stars; planets covered in lava; some with the density of Styrofoam; and others with clouds made of gemstones.
      “Each of the different types of planets we discover gives us information about the conditions under which planets can form and, ultimately, how common planets like Earth might be, and where we should be looking for them,” said Dawn Gelino, head of NASA’s Exoplanet Exploration Program (ExEP), located at the agency’s Jet Propulsion Laboratory in Southern California. “If we want to find out if we’re alone in the universe, all of this knowledge is essential.” 
      Searching for other worlds
      Fewer than 100 exoplanets have been directly imaged, because most planets are so faint they get lost in the light from their parent star. The other four methods of planet detection are indirect. With the transit method, for instance, astronomers look for a star to dim for a short period as an orbiting planet passes in front of it.
      To account for the possibility that something other than an exoplanet is responsible for a particular signal, most exoplanet candidates must be confirmed by follow-up observations, often using an additional telescope, and that takes time. That’s why there is a long list of candidates in the NASA Exoplanet Archive (hosted by NExScI) waiting to be confirmed.
      “We really need the whole community working together if we want to maximize our investments in these missions that are churning out exoplanets candidates,” said Aurora Kesseli, the deputy science lead for the NASA Exoplanet Archive at IPAC. “A big part of what we do at NExScI is build tools that help the community go out and turn candidate planets into confirmed planets.”
      The rate of exoplanet discoveries has accelerated in recent years (the database reached 5,000 confirmed exoplanets just three years ago), and this trend seems likely to continue. Kesseli and her colleagues anticipate receiving thousands of additional exoplanet candidates from the ESA (European Space Agency) Gaia mission, which finds planets through a technique called astrometry, and NASA’s upcoming Nancy Grace Roman Space Telescope, which will discover thousands of new exoplanets primarily through a technique called gravitational microlensing.
      Many telescopes contribute to the search for and study of exoplanets, including some in space (artists concepts shown here) and on the ground. Doing the work are organizations around the world, including ESA (European Space Agency), CSA (Canadian Space Agency), and NSF (National Science Foundation). NASA/JPL-Caltech Future exoplanets
      At NASA, the future of exoplanet science will emphasize finding rocky planets similar to Earth and studying their atmospheres for biosignatures — any characteristic, element, molecule, substance, or feature that can be used as evidence of past or present life. NASA’s James Webb Space Telescope has already analyzed the chemistry of over 100 exoplanet atmospheres.
      But studying the atmospheres of planets the size and temperature of Earth will require new technology. Specifically, scientists need better tools to block the glare of the star a planet orbits. And in the case of an Earth-like planet, the glare would be significant: The Sun is about 10 billion times brighter than Earth — which would be more than enough to drown out our home planet’s light if viewed by a distant observer.
      NASA has two main initiatives to try overcoming this hurdle. The Roman telescope will carry a technology demonstration instrument called the Roman Coronagraph that will test new technologies for blocking starlight and making faint planets visible. At its peak performance, the coronagraph should be able to directly image a planet the size and temperature of Jupiter orbiting a star like our Sun, and at a similar distance from that star. With its microlensing survey and coronagraphic observations, Roman will reveal new details about the diversity of planetary systems, showing how common solar systems like our own may be across the galaxy.
      Additional advances in coronagraph technology will be needed to build a coronagraph that can detect a planet like Earth. NASA is working on a concept for such a mission, currently named the Habitable Worlds Observatory.
      More about ExEP, NExScI 
      NASA’s Exoplanet Exploration Program is responsible for implementing the agency’s plans for the discovery and understanding of planetary systems around nearby stars. It acts as a focal point for exoplanet science and technology and integrates cohesive strategies for future discoveries. The science operations and analysis center for ExEP is NExScI, based at IPAC, a science and data center for astrophysics and planetary science at Caltech. JPL is managed by Caltech for NASA.
      /
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-119
      Share
      Details
      Last Updated Sep 17, 2025 Related Terms
      Exoplanets Exoplanet Discoveries Gas Giant Exoplanets Jet Propulsion Laboratory Kepler / K2 Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Search for Life Explore More
      7 min read How NASA’s Roman Mission Will Unveil Our Home Galaxy Using Cosmic Dust
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 4 min read NASA Analysis Shows Sun’s Activity Ramping Up
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      NASA’s IMAP Mission to Study Boundaries of Our Home in Space
      Summary
      NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, will launch no earlier than Tuesday, Sept. 23 to study the heliosphere, a giant shield created by the Sun. The mission will chart the heliosphere’s boundaries to help us better understand the protection it offers life on Earth and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of the solar wind, data that can be used to improve models predicting the impacts of space weather ranging from power-line disruptions to loss of satellites, to the health of voyaging astronauts. Space is a dangerous place — one that NASA continues to explore for the benefit of all. It’s filled with radiation and high-energy particles that can damage DNA and circuit boards alike. Yet life endures in our solar system in part because of the heliosphere, a giant bubble created by the Sun that extends far beyond Neptune’s orbit.
      With NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, launching no earlier than Tuesday, Sept. 23, humanity is set to get a better look at the heliosphere than ever before. The mission will chart the boundaries of the heliosphere to help us better understand the protection it offers and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of space weather conditions essential for the Artemis campaign and deep space travel. 
      “With IMAP, we’ll push forward the boundaries of knowledge and understanding of our place not only in the solar system, but our place in the galaxy as a whole,” said Patrick Koehn, IMAP program scientist at NASA Headquarters in Washington. “As humanity expands and explores beyond Earth, missions like IMAP will add new pieces of the space weather puzzle that fills the space between Parker Solar Probe at the Sun and the Voyagers beyond the heliopause.”
      Download this video from NASA’s Scientific Visualization Studio.
      Domain of Sun
      The heliosphere is created by the constant outflow of material and magnetic fields from the Sun called the solar wind. As the solar system moves through the Milky Way, the solar wind’s interaction with interstellar material carves out the bubble of the heliosphere. Studying the heliosphere helps scientists understand our home in space and how it came to be habitable.
      As a modern-day celestial cartographer, IMAP will map the boundary of our heliosphere and study how the heliosphere interacts with the local galactic neighborhood beyond. It will chart the vast range of particles, dust, ultraviolet light, and magnetic fields in interplanetary space, to investigate the energization of charged particles from the Sun and their interaction with interstellar space.
      The IMAP mission builds on NASA’s Voyager and IBEX (Interstellar Boundary Explorer) missions. In 2012 and 2018, the twin Voyager spacecraft became the first human-made objects to cross the heliosphere’s boundary and send back measurements from interstellar space. It gave scientists a snapshot of what the boundary looked like and where it was in two specific locations. While IBEX has been mapping the heliosphere, it has left many questions unanswered. With 30 times higher resolution and faster imaging, IMAP will help fill in the unknowns about the heliosphere.
      Energetic neutral atoms: atomic messengers from our heliosphere’s edge
      Of IMAP’s 10 instruments, three will investigate the boundaries of the heliosphere by collecting energetic neutral atoms, or ENAs. Many ENAs originate as positively charged particles released by the Sun but after racing across the solar system, these particles run into particles in interstellar space. In this collision, some of those positively charged particles become neutral, and an energetic neutral atom is born. The interaction also redirects the new ENAs, and some ricochet back toward the Sun.
      Charged particles are forced to follow magnetic field lines, but ENAs travel in a straight line, unaffected by the twists, turns, and turbulences in the magnetic fields that permeate space and shape the boundary of the heliosphere. This means scientists can track where these atomic messengers came from and study distant regions of space from afar. The IMAP mission will use the ENAs it collects near Earth to trace back their origins and construct maps of the boundaries of the heliosphere, which would otherwise be invisible from such a distance.
      “With its comprehensive state-of-the-art suite of instruments, IMAP will advance our understanding of two fundamental questions of how particles are energized and transported throughout the heliosphere and how the heliosphere itself interacts with our galaxy,” said Shri Kanekal, IMAP mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The IMAP mission will study the heliosphere, our home in space. NASA/Princeton University/Patrick McPike Space weather: monitoring solar wind
      The IMAP mission will also support near real-time observations of the solar wind and energetic solar particles, which can produce hazardous conditions in the space environment near Earth. From its location at Lagrange Point 1, about 1 million miles from Earth toward the Sun, IMAP will provide around a half hour’s warning of dangerous particles headed toward our planet. The mission’s data will help with the development of models that can predict the impacts of space weather ranging from power-line disruptions to loss of satellites.
      “The IMAP mission will provide very important information for deep space travel, where astronauts will be directly exposed to the dangers of the solar wind,” said David McComas, IMAP principal investigator at Princeton University.
      Cosmic dust: hints of the galaxy beyond
      In addition to measuring ENAs and solar wind particles, IMAP will also make direct measurements of interstellar dust — clumps of particles originating outside of the solar system that are smaller than a grain of sand. This space dust is largely composed of rocky or carbon-rich grains leftover from the aftermath of supernova explosions. 
      The specific elemental composition of this space dust is a postmark for where it comes from in the galaxy. Studying cosmic dust can provide insight into the compositions of stars from far outside our solar system. It will also help scientists significantly advance what we know about these basic cosmic building materials and provide information on what the material between stars is made of.
      David McComas leads the mission with an international team of 27 partner institutions. APL is managing the development phase and building the spacecraft, and it will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio. The Explorers and Heliophysics Projects Division at NASA Goddard manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, manages the launch service for the mission.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 17, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Explore More
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      2 hours ago
      3 min read Regions on Asteroid Explored by NASA’s Lucy Mission Get Official Names
      The IAU (International Astronomical Union), a global naming authority for celestial objects, has approved official…


      Article


      1 day ago
      5 min read Connecting Educators with NASA Data: Learning Ecosystems Northeast in Action


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA researchers Matt Gregory, right, Arwa Awiess, center, and Andrew Guion, left, discuss live flight data being ingested at the Mission Visualization and Research Control Center (MVRCC) at NASA’s Ames Research Center in California’s Silicon Valley on Aug. 21, 2025.NASA/ Brandon Torres-Navarrete NASA and its partners recently tested a tool for remotely piloted operations that could enable operators to transport people and goods more efficiently within urban areas.  
      The team’s goal is to ensure that when these remotely piloted aircraft – including electric vertical takeoff and landing vehicles (eVTOLs) – take to the skies, air traffic controllers won’t be overburdened by increased flight operations and safety is maintained across the national airspace. 
      On Aug. 21, NASA’s Air Traffic Management eXploration Project (ATM-X) assisted Wisk Aero when they flew a Bell 206 helicopter in Hollister, California. The purpose of the flight test was to evaluate and fine-tune a ground-based radar developed by Collins Aerospace. The radar, which provides aircraft location data, could be used during future remotely piloted operations to detect and avoid other aircraft in the vicinity.  NASA, Wisk, and Collins researchers also used the flight to test data exchange capabilities across different geographic locations between the groups, a critical capability for future remotely piloted operators in a shared airspace. This work builds on a November 2024 flight test NASA performed with Reliable Robotics and Collins Aerospace.  
      Initial analysis of the August testing of Collins’ ground-based radar actively and accurately surveilled the airspace during the aircraft’s flight test. The Collins radar system also successfully transmitted these data to NASA’s Mission Visualization Research Command Center lab at NASA’s Ames Research Center in California’s Silicon Valley. NASA, Wisk, and Collins will further analyze the flight data to better understand the radar’s performance and data exchange capabilities for future remotely piloted flight tests. This testing is a part of ATM-X’s remotely piloted testing campaign, designed to identify the infrastructure and technologies needed for the Federal Aviation Administration to safely integrate drones and air taxis into the airspace, bringing the movement of people and goods off the ground, and into the sky.   
      Remotely piloted eVTOL aircraft could bridge the gap for urban communities by offering a more affordable and accessible method of transportation and delivery services in congested, highly-populated areas. 
      NASA and Wisk will continue to collaborate on emerging eVTOL technologies to safely integrate advanced aircraft, into the national airspace. Together, the teams will gather data on eVTOL performance and characteristics during a flight test of a helicopter, which will act as a “surrogate” simulating an eVTOL flight. This work will mark another critical step towards better connecting communities across the globe.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What Would It Take to Say We Found Life?
      We call this the podium test. What would it take for you personally to confidently stand up in front of an international audience and make that claim? When you put it in that way, I think for a lot of scientists, the bar is really high.
      So of course, there would be obvious things, you know, a very clear signature of technology or a skeleton or something like that. But we think that a lot of the evidence that we might encounter first will be much more subtle. For example, chemical signs of life that have to be detected above a background of abiotic chemistry. And really, what we see might depend a lot on where we look.
      On Mars, for example, the long history of exploration there gives us a lot of context for what we might find. But we’re potentially talking about samples that are billions of years old in those cases, and on Earth, those kinds of samples, the evidence of life is often degraded and difficult to detect.
      On the ocean worlds of our outer solar system, so places like Jupiter’s moon Europa and Saturn’s moon Enceladus, there’s the tantalizing possibility of extant life, meaning life that’s still alive. But potentially we’re talking about exceedingly small amounts of samples that would have to be analyzed with a relatively limited amount of instrumentation that can be carried from Earth billions of miles away.
      And then for exoplanets, these are planets beyond our own solar system. Really, what we’re looking for there are very large magnitude signs of life that can be detectable through a telescope from many light-years away. So changes like the oxygenation of Earth’s atmosphere or changes in surface color.
      So any one of those things, if they rose to the suspicion of being evidence of life, would be really heavily scrutinized in a very sort of specific and custom way to that particular observation. But I think there are also some general principles that we can follow. And the first is just: Are we sure we’re seeing what we think we’re seeing? Many of these environments are not very well known to us, and so we need to convince ourselves that we’re actually seeing a clear signal that represents what we think it represents.
      Carl Sagan once said, “Life is the hypothesis of last resort,” meaning that we ought to work hard for such a claim to rule out alternative possibilities. So what are those possibilities? One is contamination. The spacecraft and the instruments that we use to look for evidence of life are built in an environment, Earth, that is full of life. And so we need to convince ourselves that what we’re seeing is not evidence of our own life, but evidence of indigenous life.
      If that’s the case, we should ask, should life of the type we’re seeing live there? And finally, we need to ask, is there any other way than life to make that thing, any of the possible abiotic processes that we know and even the ones that we don’t know? And as you can imagine, that will be quite a challenge.
      Once we have a piece of evidence in hand that we really do think represents evidence of life, now we can begin to develop hypotheses. For example, do we have separate independent lines of evidence that corroborate what we’ve seen and increase our confidence of life?
      Ultimately, all of this has to be looked at hard by the entire scientific community, and in that sense, I think the really operative word in our question is we. What does it take to say we found evidence of life? Because really, the answer, I think, depends on the full scientific community scrutinizing and skepticizing this observation to finally say that we scientists, we as a community and we as humanity found life.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Sep 10, 2025 Related Terms
      Astrobiology Mars Perseverance (Rover) Science & Research Science Mission Directorate Explore More
      6 min read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
      A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured…
      Article 21 minutes ago 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery 
      Article 1 day ago 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
      Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...