Jump to content

NASA’s GUSTO Prepares to Map Space Between the Stars


Recommended Posts

  • Publishers
Posted

6 min read

NASA’s GUSTO Prepares to Map Space Between the Stars

GUSTO's star trackers being calibrated while the payload is suspended by crane payload suspended by crane
 The GUSTO telescope hangs from the hangar crane during telescope pointing tests at the Long Duration Balloon Facility on the Ross Ice Shelf near the U.S. National Science Foundation’s McMurdo Station, Antarctica, on Dec. 6, 2023. Mission specialists were calibrating the star cameras, used to determine the direction of pointing of the telescope.
Credit: José Silva on behalf of the GUSTO Team

On a vast ice sheet in Antarctica, scientists and engineers are preparing a NASA experiment called GUSTO to explore the universe on a balloon. GUSTO will launch from the Ross Ice Shelf, near the U.S. National Science Foundation’s McMurdo Station research base, no earlier than Dec. 21.

GUSTO, which stands for Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory, will peer into the space between stars called the interstellar medium. The balloon-borne telescope will help scientists make a 3D map of a large part of the Milky Way in extremely high-frequency radio waves. Examining a 100-square-degree area, GUSTO will explore the many phases of the interstellar medium and the abundances of key chemical elements in the galaxy.

By studying the LMC and comparing it to the Milky Way, we’ll be able to understand how galaxies evolve from the early universe until now.

Chris Walker

Chris Walker

GUSTO principal investigator

In particular, GUSTO will scan the interstellar medium for carbon, oxygen, and nitrogen because they are critical for life on Earth. These elements can also help scientists disentangle the complex web of processes that sculpt the interstellar medium.  

While our galaxy brims with billions of stars, including our Sun, that are interesting in their own right, the space between them holds a wealth of clues about how stars and planets are born.

The interstellar medium is where diffuse, cold gas and dust accumulate into gigantic cosmic structures called molecular clouds, which, under the right conditions, can collapse to form new stars. From the swirling disk of material around the young star, planets can form.

GUSTO is unique in its ability to examine the first part of this process, “to understand how these clouds form in the first place,” Chris Walker, principal investigator of GUSTO at the University of Arizona, said. GUSTO is a collaboration between NASA, the University of Arizona, Johns Hopkins Applied Physics Laboratory (APL), and the Netherlands Institute for Space Research (SRON); as well as MIT, JPL, the Smithsonian Astrophysical Observatory, and others.

Flipping GUSTO from horizontal to vertical
The GUSTO telescope is seen on Nov. 9, 2023, as Colombia Scientific Balloon Facility personnel assist the GUSTO team in flipping the observatory from a horizontal position to a vertical position. The photo was taken at the Long Duration Balloon Facility on the Ross Ice Shelf near the U.S. National Science Foundation’s McMurdo Station, Antarctica.
Credit: José Silva on behalf of the GUSTO Team

Eventually, when massive stars die and explode as supernovae, massive shock waves ripple through molecular clouds, which can in turn lead to more stars being born, or simply destroy the clouds. GUSTO can also look at this end stage of the molecular clouds.

GUSTO functions as a cosmic radio, equipped to “listen” for particular cosmic ingredients. That’s because it senses the high-frequency signals that atoms and molecules transmit. The “T” in GUSTO stands for “terahertz” – that’s about a thousand times higher than the frequencies that cellphones operate at.

“We basically have this radio system that we built that we can turn the knob and tune to the frequency of those lines,” Walker said. “And if we hear something, we know it’s them. We know it’s those atoms and molecules.”

As the telescope moves across the sky, scientists will use it to map the intensity and velocities of the signals from particular atoms and molecules at each position. “Then we can go back and connect the dots and create an image that looks like a photograph of what the emission looks like,” Walker said.

Observations like these can’t be done for carbon, nitrogen, and oxygen from Earth-based telescopes because of the water vapor in our atmosphere absorbing the light from the atoms and molecules in question, interfering with measurements. On a balloon about 120,000 feet above the ground, GUSTO will fly above most of that water vapor. “For the type of science we do, it’s as good as being in space,” Walker said.

The GUSTO telescope will also reveal the 3D structure of the Large Magellanic Cloud, or LMC, a dwarf galaxy near our Milky Way. The LMC resembles some of the galaxies of the early universe that NASA’s James Webb Space Telescope is exploring. But since the LMC is much closer than the distant early galaxies, scientists can examine it in greater detail with GUSTO.

“By studying the LMC and comparing it to the Milky Way, we’ll be able to understand how galaxies evolve from the early universe until now,” Walker explained.

GUSTO is expected to fly for at least 55 days on a 39 million cubic-foot zero-pressure balloon, a type of balloon that can fly high for long periods of time in the Austral Summer over Antarctica and has the diameter of a football field as it floats.

LDBF sign at McMurdo
GUSTO team member José Silva, Ph.D. student at the Netherlands Institute for Space Research (SRON), stands next to the Long Duration Balloon Facility sign on the Ross Ice Shelf, 8 miles from the U.S. National Science Foundation’s McMurdo Station, Antarctica, on Nov. 9, 2023.
Credit: Geoffrey Palo on behalf of the GUSTO Team

Antarctica provides an ideal launch location for GUSTO. During the southern hemisphere’s summer, the continent gets constant sunlight, so a scientific balloon can be extra stable there. Plus, the atmospheric zone around the South Pole generates cold rotating air – creating a phenomenon called an anticyclone, which enables balloons to fly in circles without disturbance.

“Missions will fly in circles around the South Pole for days or weeks at a time, which is really valuable to the science community,” said Andrew Hamilton, chief of the NASA Balloon Program Office at the Wallops Flight Facility in Virginia. “The longer they have for observation, the more science they can get. 

GUSTO is the first balloon-borne experiment in NASA’s Explorer program. It has the same scientific reach as the program’s space-borne satellites, such as TESS (the Transiting Exoplanet Survey Satellite) and IXPE (Imaging X-Ray Polarimetry Explorer).

“With GUSTO, we’re really trying to trailblaze,” said Kieran Hegarty, Program Manager for GUSTO at APL. “We want to show that balloon investigations do return compelling science.”

A total of twelve mission team members from University of Arizona and APL are on site in Antarctica performing the final checks before GUSTO’s launch.

With seals and penguins nearby, Walker and colleagues are hard at work readying this experiment for its ultimate adventure in the sky. For Walker, GUSTO represents some 30 years of effort, the outgrowth of many experiments from Earth-based telescopes and other balloon efforts.

“We all feel very fortunate and privileged to do a mission like this – to have the opportunity to put together the world’s most advanced terahertz instrument ever created, and then drag it halfway around the world and then launch it,” he said. “It’s a challenge, but we feel honored and humbled to be in the position to do it.”

About the Mission

In March 2017, NASA Astrophysics Division selected the Explorer Mission of Opportunity GUSTO (Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory) to measure emissions from the interstellar medium to help scientists determine the life cycle of interstellar gas by surveying a large region of our Milky Way galaxy and the Large Magellanic Cloud. The GUSTO mission is led by Principal Investigator Christopher Walker from the University of Arizona in Tucson. The team also includes the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, which provided the balloon platform to mount the instrumentation, known as the gondola, and the GUSTO project management. The University of Arizona provided the GUSTO telescope and the focal plane instrument, which incorporates detector technologies from NASA’s Jet Propulsion Laboratory in Pasadena, California, the Massachusetts Institute of Technology in Cambridge, Arizona State University in Tempe, and SRON Netherlands Institute for Space Research.

Media Contacts

Elizabeth Landau
Headquarters, Washington
202-358-0845
elizabeth.r.landau@nasa.gov

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Pinpoints Young Stars in Spiral Galaxy
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1317. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team In this image, the NASA/ESA Hubble Space Telescope peers into the spiral galaxy NGC 1317 in the constellation Fornax, located more than 50 million light-years from Earth. Visible in this galaxy image is a bright blue ring that hosts hot, young stars. NGC 1317 is one of a pair, but its rowdy larger neighbor, NGC 1316, lies outside Hubble’s field of view. Despite the absence of its neighboring galaxy, this image finds NGC 1317 accompanied by two objects from very different parts of the universe. The bright point ringed with a crisscross pattern is a star from our own galaxy surrounded by diffraction spikes, whereas the redder elongated smudge is a distant galaxy lying far beyond NGC 1317.
      The data presented in this image are from a vast observing campaign of hundreds of observations from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. Combined with data from the ALMA array in the Atacama Desert, these observations help astronomers chart the connections between vast clouds of cold gas and the fiercely hot, young stars that form within them. ALMA’s unparalleled sensitivity at long wavelengths identified vast reservoirs of cold gas throughout the local universe, and Hubble’s sharp vision pinpointed clusters of young stars, as well as measuring their ages and masses.
      Often the most exciting astronomical discoveries require this kind of telescope teamwork, with cutting-edge facilities working together to provide astronomers with information across the electromagnetic spectrum. The same applies to Hubble’s observations that laid the groundwork for the NASA/ESA/CSA James Webb Space Telescope’s scientific observations.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Science Highlights



      Science Behind the Discoveries


      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Dennis Leveson-Gower and Laura Iraci. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Space Biosciences Star: Dennis Leveson-Gower
      Dennis Leveson-Gower, Assistant Branch Chief of Bioengineering, has contributed to numerous projects and payloads within the Space Biosciences Division since 2012. He is recognized for exceptional leadership, operational excellence, and strategic collaboration that have advanced the Bioengineering Branch and strengthened partnerships with commercial spaceflight organizations.
      Earth Science Star: Laura Iraci
      Laura Iraci is a Senior Research Scientist in the Atmospheric Science Branch. She is recognized for her outstanding scientific leadership and her impactful role as a mentor. As head of the Trace Gas Group, Laura develops and deploys custom atmospheric sampling and remote sensing instrumentation for critical NASA suborbital and spaceflight missions, including major airborne science field campaigns. She is equally dedicated to mentoring early-career researchers, with many advancing into highly productive staff positions at NASA.

      View the full article
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
  • Check out these Videos

×
×
  • Create New...