Jump to content

50 Years Ago: Skylab 4 Astronauts Push Past the One-Month Mark


Recommended Posts

  • Publishers
Posted

In December 1973, Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue passed the one-month mark of the third and final mission aboard the Skylab space station. Launching on Nov. 16, they began a planned 56-day flight that mission managers fully expected to extend to 84 days. They continued the science program begun by the previous two Skylab crews, including biomedical studies on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package (EREP), and solar observations with instruments mounted on the Apollo Telescope Mount (ATM). To study newly discovered Comet Kohoutek, scientists added cometary observations to the crew’s already busy schedule, including adding a far ultraviolet camera to Skylab’s instrument suite.

Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments Earth Resources Experiment Package infrared photograph of Florida’s central Atlantic coast including NASA’s Kennedy Space Center Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system
Left: Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments. Middle: Earth Resources Experiment Package infrared photograph of Florida’s central Atlantic coast including NASA’s Kennedy Space Center. Right: Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system.

On Dec. 13, the mission’s 28th day, program officials assessed the astronauts’ performance and the status of the station and fully expected that they could complete the nominal 56-day mission and most likely the full 84 days. Despite being overworked and often behind the timeline, Carr, Gibson, and Pogue had already accomplished 84 hours of ATM solar observations, 12 EREP passes, 80 photographic and visual Earth observations, all of the scheduled medical experiments, as well as numerous other activities such as student experiments, and science demonstrations. The astronaut’s major concern centered around the timelining process that had not given them time to adjust to their new environment and did not consider their on-orbit daily routine. Despite the crew sending taped verbal messages to the ground asking for help in fixing these issues, the problem persisted. Skylab 4 Lead Flight Director Neil B. Hutchinson later admitted that the ground team learned many lessons about timelining long duration missions during the first few weeks of Skylab 4.

Soyuz 13 cosmonauts Pyotr I. Klimuk, left, and Valentin V. Lebedev during their mission Model of Soyuz 13, showing the replacement of the forward docking system with the Orion-2 telescope inside its housing Preflight view of the Orion-2 instrument package
Left: Soyuz 13 cosmonauts Pyotr I. Klimuk, left, and Valentin V. Lebedev during their mission. Middle:  Model of Soyuz 13, showing the replacement of the forward docking system with the Orion-2 telescope inside its housing. Right: Preflight view of the Orion-2 instrument package. Image credits: courtesy of Roscosmos.

On Dec. 18, Carr, Gibson, and Pogue received visitors in low Earth orbit. On their 33rd day aboard the Skylab space station, the Soviet Union launched Soyuz 13, with Pyotr I. Klimuk and Valentin V. Lebedev aboard. Although the event marked the first time in history that American astronauts and Soviet cosmonauts orbited the Earth at the same time, the two crews neither met nor communicated with each other, traveling in very different orbits with different missions. The Soyuz 13 cosmonauts operated a scientific package called Orion-2, comprised of three ultraviolet spectrographs for stellar observations and an X-ray telescope to image the Sun. Soviet engineers modified the orbital compartment of the Soyuz, removing its docking apparatus to accommodate the Orion-2 instruments. On Dec. 26, the cosmonauts landed in Kazakhstan in the middle of a snowstorm. The success of Soyuz 13 gave the Soviets and their American counterparts confidence that the spacecraft, modified after the Soyuz 11 accident, would be safe for the Apollo-Soyuz Test Project (ASTP), a joint mission agreed to in May 1972 and planned for July 1975.

Gerald P. Carr flying the Astronaut Maneuvering Unit A far ultraviolet image of Comet Kohoutek William R. Pogue at the controls of the Apollo Telescope Mount
Left: Gerald P. Carr flying the Astronaut Maneuvering Unit. Middle: A far ultraviolet image of Comet Kohoutek. Right: William R. Pogue at the controls of the Apollo Telescope Mount.

Carr, Gibson, and Pogue increased their focus on observing Comet Kohoutek as it neared perihelion, or its closest approach to the Sun, on Dec. 28. At that point, Skylab’s solar telescopes could observe the comet better than any ground-based instruments. In addition to dedicated observations during two spacewalks, the astronauts continued to monitor the comet well into January as it headed rapidly away from the Sun, to return in maybe 75,000 years. The astronauts continued their medical studies and Earth observations as well as tests inside the large dome of the workshop of the Astronaut Maneuvering Unit, a precursor of the Manned Maneuvering Unit used during the space shuttle program to retrieve satellites.

Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue build and decorate their makeshift Christmas tree Carr, left, Gibson, and Pogue’s Christmas stockings Gibson, left, Carr, and Pogue open Christmas presents
Left: Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue build and decorate their makeshift Christmas tree. Middle: Carr, left, Gibson, and Pogue’s Christmas stockings. Right: Gibson, left, Carr, and Pogue open Christmas presents.

For only the second time, American astronauts celebrated Christmas in space. On the first occasion five years earlier, Apollo 8 astronauts observed Christmas as the first crew to orbit the Moon. In the more spacious Skylab workshop, and with more time to prepare, Carr, Gibson, and Pogue built a makeshift Christmas tree by repurposing food cans, used colored decals as decorations, and topped it with a cardboard cutout in the shape of a comet. They hung stockings on the wall beneath the tree and sent holiday greetings to people on the ground.

Image of Skylab 4 astronaut Gerald P. Carr from the mission’s second spacewalk, changing film cassettes in the Apollo Telescope Mount (ATM) Image of Skylab 4 astronaut Gerald P. Carr from the mission’s second spacewalk, repairing one of the ATM instruments Image of Skylab 4 astronaut Gerald P. Carr from the mission’s second spacewalk, observing Comet Kohoutek.
Skylab 4 astronaut Gerald P. Carr in three scenes from the mission’s second spacewalk, with tasks including changing film cassettes in the Apollo Telescope Mount (ATM), repairing one of the ATM instruments, and observing Comet Kohoutek.

The main task on Christmas Day involved the mission’s second spacewalk. Carr and Pogue spent 7 hours and 1 minute outside the space station, then a record for Earth orbital spacewalks. In addition to replacing film cartridges in the ATM, they repaired a stuck filter wheel on an ATM instrument, and used an ultraviolet camera to photograph Comet Kohoutek. Once back inside the station, they enjoyed a Christmas dinner complete with fruitcake, talked to their families, and opened presents from the astronauts’ wives that the ground crew at NASA’s Kennedy Space Center in Florida had hidden in lockers in the Command Module.

In the Mission Control Center at NASA’s Johnson Space Center in Houston, Professor Luboš Kohoutek talks with the Skylab 4 crew Astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue during the videoconference with Professor Kohoutek Gibson during the third Skylab 4 spacewalk, exclusively dedicated to study Comet Kohoutek
Left: In the Mission Control Center at NASA’s Johnson Space Center in Houston, Professor Luboš Kohoutek talks with the Skylab 4 crew. Middle: Astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue during the videoconference with Professor Kohoutek. Right: Gibson during the third Skylab 4 spacewalk, exclusively dedicated to study Comet Kohoutek.

On Dec. 28, the day the astronauts reached the halfway point of their 84-day mission, they held an 11-minute video conference with the comet’s discoverer, Czech astronomer Luboš Kohoutek during his visit to the Mission Control Center at NASA’s Johnson Space Center (JSC) in Houston. The next day, Carr and Gibson completed the mission’s third spacewalk lasting 3 hours 29 minutes and dedicated to observing and photographing the comet. Although the crew’s work schedule had improved over the previous few weeks, the astronauts still found it difficult to accomplish the timeline the planners laid out for them. To rectify the problem, Carr requested a dedicated space to ground voice conference so the issues could be aired and rectified. Following what Carr later called the first sensitivity session in space on Dec. 30, planners understood the astronauts’ constraints and the crew worked more effectively the second half of the mission. Capsule communicator Richard H. Truly mentioned that JSC Director Christopher C. Kraft and Flight Crew Operations Chief Donald K. “Deke” Slayton had listened to the conversation and agreed that the teams “made about a million bucks” during the 55-minute conversation. The lessons learned about scheduling activities for long-duration spaceflights proved useful to later programs such as Shuttle/Mir and the International Space Station.

Williams R. Pogue, left, and Gerald P. Carr place bags into the trash airlock Edward G. Gibson floats into the large volume of the orbital workshop from airlock module Carr and Pogue demonstrate weightlessness
Left: Williams R. Pogue, left, and Gerald P. Carr place bags into the trash airlock. Middle: Edward G. Gibson floats into the large volume of the orbital workshop from airlock module. Right: Carr and Pogue demonstrate weightlessness.

On Jan. 1, 1974, Carr, Gibson, and Pogue celebrated the coming of the new year, the first space crew to observe that holiday along with Thanksgiving and Christmas. An American astronaut would not repeat that for 23 years until John E. Blaha during his four-month stay aboard the Mir space station in 1996-7. On Jan. 10, Carr, Gibson, and Pogue enjoyed a day off, meaning planners only scheduled one third of their time, freeing them to pursue activities of their own choosing. On the ground, mission managers held the 56-day review of the mission and based on the crew’s health and the station’s condition declared the mission go for 84 days, although strictly speaking, managers and flight surgeons approved the mission’s extension one week at a time.

For more insight into the Skylab 4 mission, read Carr’s, Gibson’s, and Pogue’s oral histories with the JSC History Office.

To be continued …

With special thanks to Ed Hengeveld for his expert contributions on Skylab imagery.

Share

Details

Last Updated
Dec 18, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronauts Send Fourth of July Wishes From the International Space Station
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By NASA
      NASA astronaut Nichole Ayers conducts research operations inside the Destiny laboratory module’s Microgravity Science Glovebox aboard the International Space Station.Credit: NASA Students attending the U.S. Space and Rocket Center Space Camp in Huntsville, Alabama, will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions.
      At 12:40 p.m. EDT on Tuesday, July 1, NASA astronauts Anne McClain, Jonny Kim, and Nichole Ayers will answer student questions. Ayers is a space camp alumna.
      Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
      The U.S. Space and Rocket Center will host the downlink while celebrating the 65th anniversary of NASA’s Marshall Space Flight Center. This event is open to the public.
      Media interested in covering the event must RSVP by 5 p.m., Friday, June 27, to Pat Ammons at: 256-721-5429 or pat.ammons@spacecamp.com.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By European Space Agency
      ESA Delivers: 50 years booklet
      50 hallmark achievements across 50 years
      View the full article
    • By NASA
      NASA astronauts (left to right) Anne McClain and Nichole Ayers pose for a portrait together aboard the International Space Station. Moments earlier, Ayers finished trimming McClain’s hair using an electric razor with a suction hose attached that collects the loose hair to protect the station’s atmosphere.NASA Students from New York and Utah will hear from NASA astronauts aboard the International Space Station as they answer prerecorded questions in two separate events.
      At 11:30 a.m. EDT on Monday, June 23, NASA astronauts Nichole Ayers and Anne McClain will answer questions submitted by students from P.S. 71 Forest Elementary School in Ridgewood, New York. Media interested in covering the event must RSVP by 5 p.m. Friday, June 20, to Regina Beshay at: rbeshay2@school.nyc.gov or 347-740-6165.
      At 11:05 a.m. on Friday, June 27, Ayers and McClain will answer questions submitted by students from Douglas Space and Science Foundation, Inc., in Layton, Utah. Media interested in covering the event must RSVP by 5 p.m. Wednesday, June 25, to Sarah Merrill at: sarahmonique@gmail.com or 805-743-3341.
      Watch the 20-minute Earth-to-space calls on NASA STEM YouTube Channel.
      P.S. 71 Forest Elementary School will host kindergarten through fifth grade students. Douglas Space and Science Foundation will host participants from the Science, Technology, Achievement Research camp. Both events aim to inspire students to imagine a future in science, technology, engineering, and mathematics careers through ongoing collaborations, mentorship, and hands-on learning experiences.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...