Jump to content

NASA’s NEOWISE Celebrates 10 Years, Plans End of Mission


Recommended Posts

  • Publishers
Posted
1-neowise-eom.jpg?w=1600
NEOWISE is depicted in an artist’s concept in front of an image of the infrared sky captured by the mission showing asteroid Holda (the string of red dots moving across the sky). Holda was the first near-Earth object the mission detected shortly after the space telescope was reactivated in 2013.
NASA/JPL-Caltech

The asteroid and comet-hunting infrared space telescope has gathered an impressive haul of observations, but it’s now at the mercy of the Sun, which is accelerating its demise.

NASA’s NEOWISE has had a busy decade. Since its reactivated mission began on Dec. 13, 2013, the space telescope has discovered a once-in-a-lifetime comet, observed more than 3,000 near-Earth objects, bolstered international planetary defense strategies, and supported another NASA mission’s rendezvous with a distant asteroid. And that’s just a partial list of accomplishments.

But all good things must come to an end: Solar activity is causing NEOWISE – short for Near-Earth Object Wide-field Infrared Survey Explorer – to fall out of orbit. By early 2025, the spacecraft is expected to drop low enough into Earth’s atmosphere that it will become unusable. Eventually, it will reenter our atmosphere, entirely burning up.

About every 11 years, the Sun experiences a cycle of increased activity that peaks during a period called solar maximum. Explosive events, such as solar flares and coronal mass ejections, become more frequent and heat up our planet’s atmosphere, causing it to expand. Atmospheric gases increase drag on satellites orbiting Earth, slowing them down. With the Sun currently approaching its next maximum, NEOWISE will no longer be able to maintain its orbit above our atmosphere.

e1-jpegpia23792.jpg?w=860
Comet C/2020 F3 NEOWISE appears as a trio of fuzzy red dots in this composite of several infrared images captured by the NEOWISE mission on March 27, 2020. These observations helped astronomers determine the comet’s path shortly after its discovery.
NASA/JPL-Caltech

“The mission has planned for this day a long time. After several years of calm, the Sun is waking back up,” said Joseph Masiero, NEOWISE’s deputy principal investigator and a scientist at IPAC, a research organization at Caltech in Pasadena, California. “We are at the mercy of solar activity, and with no means to keep us in orbit, NEOWISE is now slowly spiraling back to Earth.”

WISE Beginnings

The past 10 years represent a second life for the spacecraft. Managed by NASA’s Jet Propulsion Laboratory in Southern California, NEOWISE repurposed a different mission that launched in 2009: the Wide-field Infrared Survey Explorer (WISE). Data from WISE and NEOWISE has been used to study distant galaxies, cool stars, exploding white dwarf stars, outgassing comets, near-Earth asteroids, and more.

In 2010, WISE achieved its scientific goal of conducting an all-sky infrared survey with far greater sensitivity than previous surveys. The WISE mission also found tens of millions of actively feeding supermassive black holes across the sky. Through the Disk Detective project, citizen scientists have used WISE data to find circumstellar disks, which are spinning clouds of gas, dust, and rubble around stars.

Invisible to the naked eye, infrared wavelengths are emitted by warm objects. To keep the heat generated by WISE itself from interfering with its observations of infrared wavelengths, the spacecraft relied on cryogenic coolant. After the coolant ran out and WISE had mapped the sky twice, NASA put the spacecraft into hibernation in February 2011.

Without coolant, the space telescope could no longer observe the universe’s coldest objects, but it could still see near-Earth asteroids and comets, which are heated by the Sun. So NASA reactivated the spacecraft in 2013 with a more specialized role in mind: aiding planetary defense efforts by surveying and studying those objects, which can stray into our planet’s orbital neighborhood and create a potential impact hazard.

Astronomers could not only rely on the mission to seek out these objects, but also use its data to figure out their size and albedo – how much sunlight their surfaces reflect – and to gather clues about the minerals and rocks they’re composed of.

“NEOWISE has showcased the importance of having an infrared space survey telescope as part of NASA’s planetary defense strategy while also keeping tabs on other objects in the solar system and beyond,” said Amy Mainzer, the mission’s principal investigator at the University of Arizona in Tucson.

Mainzer is also leading NASA’s upcoming NEO Surveyor, which will build on NEOWISE’s legacy. The next-generation infrared space telescope will seek out some of the hardest-to-find near-Earth objects, such as dark asteroids and comets that don’t reflect much visible light, as well as objects that approach Earth from the direction of the Sun. Scheduled for launch in 2027, the JPL-managed mission will also search for objects known as Earth Trojans – asteroids that lead or trail our planet’s orbit – the first of which WISE discovered in 2011.

Comet NEOWISE and Beyond

Since becoming NEOWISE, the mission has scanned the entire sky over 20 times and made 1.45 million infrared measurements of over 44,000 solar system objects. That includes more than 3,000 near-Earth objects, 215 of which NEOWISE discovered. Data from the mission has contributed to refining the orbits of these objects while gauging their size as well.

Its forte is characterizing near-Earth asteroids. In 2021, NEOWISE became a key component of an international planetary defense exercise that focused on the hazardous asteroid Apophis.

The mission has also discovered 25 comets, including the long-period comet C/2020 F3 (NEOWISE). The comet became a dazzling celestial object visible in the Northern Hemisphere for several weeks in 2020 and the first comet that could be seen by the naked eye since 2007, when Comet McNaught was primarily visible in the Southern Hemisphere.

Future researchers will continue to rely on the vast archive of NEOWISE observations to make new discoveries, similar to the way researchers used WISE data from 2010 long after the observations were made to characterize asteroid Dinkinesh in support of NASA’s Lucy mission before its October 2023 encounter.

“This is a bittersweet moment. It’s sad to see this trailblazing mission come to an end, but we know there’s more treasure hiding in the survey data,” said Masiero. “NEOWISE has a vast archive, covering a very long period of time, that will inevitably advance the science of the infrared universe long after the spacecraft is gone.”

More About the Mission

NEOWISE and NEO Surveyor support the objectives of NASA’s Planetary Defense Coordination Office (PDCO) at NASA Headquarters in Washington. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 140 meters (460 feet) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.

JPL manages and operates the NEOWISE mission for PDCO within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing takes place at IPAC at Caltech. Caltech manages JPL for NASA.

For more information about NEOWISE, visit:

https://www.nasa.gov/neowise

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The IAU (International Astronomical Union), an international non-governmental research organization and global naming authority for celestial objects, has approved official names for features on Donaldjohanson, an asteroid NASA’s Lucy spacecraft visited on April 20. In a nod to the fossilized inspiration for the names of the asteroid and spacecraft, the IAU’s selections recognize significant sites and discoveries on Earth that further our understanding of humanity’s origins.
      The asteroid was named in 2015 after paleoanthropologist Donald Johanson, discoverer of one of the most famous fossils ever found of a female hominin, or ancient human ancestor, nicknamed Lucy. Just as the Lucy fossil revolutionized our understanding of human evolution, NASA’s Lucy mission aims to revolutionize our understanding of solar system evolution by studying at least eight Trojan asteroids that share an orbit with Jupiter.
      Postcard commemorating NASA’s Lucy spacecraft April 20, 2025, encounter with the asteroid Donaldjohanson. NASA’s Goddard Space Flight Center Donaldjohanson, located in the main asteroid belt between the orbits of Mars and Jupiter, was a target for Lucy because it offered an opportunity for a comprehensive “dress rehearsal” for Lucy’s main mission, with all three of its science instruments carrying out observation sequences very similar to the ones that will occur at the Trojans.
      After exploring the asteroid and getting to see its features up close, the Lucy science and engineering team proposed to name the asteroid’s surface features in recognition of significant paleoanthropological sites and discoveries, which the IAU accepted.
      The smaller lobe is called Afar Lobus, after the Ethiopian region where Lucy and other hominin fossils were found. The larger lobe is named Olduvai Lobus, after the Tanzanian river gorge that has also yielded many important hominin discoveries.
      The asteroid’s neck, Windover Collum, which joins those two lobes, is named after the Windover Archeological Site near Cape Canaveral Space Force Station in Florida — where NASA’s Lucy mission launched in 2021. Human remains and artifacts recovered from that site revolutionized our understanding of the people who lived in Florida around 7,300 years ago.
      Officially recognized names of geologic features on the asteroid Donaldjohanson. NASA Goddard/SwRI/Johns Hopkins APL Two smooth areas on the asteroid’s neck are named Hadar Regio, marking the specific site of Johanson’s discovery of the Lucy fossil, and Minatogawa Regio, after the location where the oldest known hominins in Japan were found. Select boulders and craters on Donaldjohanson are named after notable fossils ranging from pre-Homo sapiens hominins to ancient modern humans. The IAU also approved a coordinate system for mapping features on this uniquely shaped small world.
      As of Sept. 9, the Lucy spacecraft was nearly 300 million miles (480 million km) from the Sun en route to its August 2027 encounter with its first Trojan asteroid called Eurybates. This places Lucy about three quarters of the way through the main asteroid belt. Since its encounter with Donaldjohanson, Lucy has been cruising without passing close to any other asteroids, and without requiring any trajectory correction maneuvers.
      The team continues to carefully monitor the instruments and spacecraft as it travels farther from the Sun into a cooler environment.
      Stay tuned at nasa.gov/lucy for more updates as Lucy continues its journey toward the never-before-explored Jupiter Trojan asteroids.
      By Katherine Kretke
      Southwest Research Institute
      Explore More
      5 min read Avatars for Astronaut Health to Fly on NASA’s Artemis II


      Article


      1 day ago
      3 min read Weird Ways to Observe the Moon


      Article


      1 day ago
      2 min read Hubble Surveys Cloudy Cluster


      Article


      4 days ago
      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
      One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
      Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
      Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
      Solving Milky Way mystery
      Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
      Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
      This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
      By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
      “I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
      Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
      Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
      “Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
      Galactic life cycles
      The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
      “Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
      Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
      “If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
      Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
      The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
      Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
      NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
      Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
      “With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
      After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
      “People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
      Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download additional images and video from NASA’s Scientific Visualization Studio.
      For more information about the Roman Space Telescope, visit:
      https://www.nasa.gov/roman
      By Laine Havens
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
      5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
      Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 2 months ago View the full article
    • By NASA
      Credit: NASA NASA has selected Bastion Technologies Inc. of Houston to provide safety and mission assurance services for the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      The Safety and Mission Assurance II (SMAS II) award is a performance-based, indefinite-delivery/indefinite-quantity contract with a maximum potential value of $400 million. A phase-in period begins Monday, followed by a base ordering period of four years with options to extend services through March 2034.
      Under the contract, Bastion will provide services for a wide range of activities including system safety, reliability, maintainability, software assurance, quality engineering and assurance, independent assessment, institutional safety, and pressure systems.
      The work will support various spaceflight and science missions, research and development projects, hardware fabrication and testing, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, and Stennis Space Center in Bay St. Louis, Mississippi. Tasks also will be performed at NASA’s Kennedy Space Center in Florida, contractor facilities, and other sites supported by Marshall’s Safety and Mission Assurance Directorate.
      The SMAS II contract is a small business set-aside, which levels the playing field for qualified small businesses to compete for and win federal contracts.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 15, 2025 LocationNASA Headquarters Related Terms
      Marshall Space Flight Center Kennedy Space Center Michoud Assembly Facility NASA Centers & Facilities Stennis Space Center View the full article
    • By European Space Agency
      Video: 00:01:43 An essential part of ESA’s Space Safety programme is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a true circular economy in space, minimising the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030.  
      ESA has now taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE, planned for launch in 2029. 
      RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite, extending the life of geostationary satellites that need support with attitude and orbit control, but are otherwise in working order.  
      After verifying that it meets all the performance standards in a first demonstration, prime contractor, operator and co-founder D-Orbit will start commercial life extension services for geostationary satellites. 
      ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refuelling, refurbishment and assembling – all essential elements for creating a circular economy in space.   
      Watch with subtitles
      View the full article
    • By Space Force
      The U.S. Space Force honored Ed Mornston, associate deputy chief of Space Operations for Intelligence, for his 50 years of combined military and civilian service.

      View the full article
  • Check out these Videos

×
×
  • Create New...