Jump to content

NASA’s Space Station Laser Comm Terminal Achieves First Link


Recommended Posts

  • Publishers
Posted
3 Min Read

NASA’s Space Station Laser Comm Terminal Achieves First Link

jsc2023e064874orig.jpg?w=1536
NASA’s ILLUMA-T payload at Goddard Space Flight Center fully tested and integrated prior to its delivery to Kennedy Space Center.
Credits: NASA's Goddard Space Flight Center

A NASA technology experiment on the International Space Station completed its first laser link with an in-orbit laser relay system on Dec. 5, 2023. Together, they complete NASA’s first two-way, end-to-end laser relay system.

NASA’s LCRD (Laser Communications Relay Demonstration) and the new space station demonstration, ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal), successfully exchanged data for the first time. LCRD and ILLUMA-T are demonstrating how a user mission, in this case the space station, can benefit from a laser communications relay located in geosynchronous orbit.

NASA’s ILLUMA-T payload communicating with LCRD over laser signals
NASA’s ILLUMA-T payload communicating with LCRD over laser signals.
NASA / Dave Ryan

Laser communications, also known known as optical communications, uses infrared light rather than traditional radio waves to send and receive signals. The tighter wavelength of infrared light allows spacecraft to pack more data into each transmission. Using laser communications greatly increases the efficiency of data transfer and can lead to a faster pace of scientific discoveries.

A quad like graphic showing the Benefits of Laser Communications. In order: Efficient, Lighter, Secure, Flexible.
The benefits of laser communications: more efficient, lighter systems, increased security, and more flexible ground systems.
NASA / Dave Ryan

On Nov. 9, NASA’s SpaceX 29th commercial resupply services mission launched cargo and new science experiments, including ILLUMA-T, to the space station. Following its arrival, the payload was installed onto the station’s Japanese Experiment Module-Exposed Facility.

SpaceX Falcon 9 rocket and uncrewed Dragon spacecraft lift off from Kennedy Space Center's Launch Pad 39A for NASA and SpaceX's 29th resupply services mission to the International Space Station.
The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST.
SpaceX

ILLUMA-T and LCRD are a part of the NASA Space Communications and Navigation (SCaN) program’s effort to demonstrate how laser communications technologies can significantly benefit science and exploration missions.

“ILLUMA-T’s first link with LCRD – known as first light – is the latest demonstration proving that laser communications is the future.” said Dr. Jason Mitchell, director of SCaN’s Advanced Communications and Navigation Technology division. “Laser communications will not only return more data from science missions, but could serve as NASA’s critical, two-way link to keep astronauts connected to Earth as they explore the Moon, Mars, and beyond.”

NASA's ILLUMA-T payload achieved First Light with LCRD. In this video, Matt Magsamen explains the First Light milestone.

Shortly after space station installation, operation engineers began conducting on-orbit testing to ensure the ILLUMA-T payload operated nominally. Now, it is communicating with LCRD, a relay launched in 2021 that has conducted over 300 experiment configurations to help NASA refine laser communications technologies. LCRD and ILLUMA-T are exchanging data at 1.2 gigabits-per-second.

“We have demonstrated that we can overcome the technical challenges for successful space communications using laser communications. We are now performing operational demonstrations and experiments that will allow us to optimize our infusion of proven technology into our missions to maximize our exploration and science,” said David Israel, a NASA space communications and navigation architect.

NASA's Laser Communications Roadmap. This image includes the 2013 LLCD mission, the 2021 LCRD mission, the 2022 TBIRD mission, the 2023 DSOC mission, the 2023 ILLUMA-T mission, and the 2024 O2O mission.
NASA’s Laser Communications Roadmap: Demonstrating laser communications capabilities on multiple missions in a variety of space regimes.
NASA/Dave Ryan

The LCRD experiments are conducted with industry, academia, and other government agencies. ILLUMA-T is now LCRD’s first in-space user experiment. NASA is still accepting experiments to work with LCRD. Interested parties should contact lcrd-experiments@nasa.onmicrosoft.com for more information.

ILLUMA-T is funded by NASA’s Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington. The payload is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Partners include the International Space Station program office at NASA’s Johnson Space Center in Houston and the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, Massachusetts.

For more information: https://nasa.gov/scan

About the Author

Katherine Schauer

Katherine Schauer

Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.

Share

Details

Last Updated
Dec 13, 2023
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman emphasized the critical role of partnerships and the growing strategic importance of space during his remarks at the 2nd International AeroSpace Power Conference in Rome.

      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By European Space Agency
      Image: Part of the Italian island of Sardinia is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
    • By NASA
      NASA astronaut and Expedition 72 flight engineer Anne McClain is pictured near one of the International Space Station’s main solar arrays during a spacewalk.NASA/Nichole Ayers In this May 1, 2025, photo taken by fellow NASA astronaut Nichole Ayers, Anne McClain works near one of the International Space Station’s main solar arrays during a spacewalk. During the May 1 spacewalk – McClain’s third and Ayers’ first – the astronaut pair relocated a space station communications antenna and completed the initial mounting bracket installation steps for an International Space Station Rollout Solar Array, or IROSA, that will arrive on a future SpaceX commercial resupply services mission, in addition to some get ahead tasks.
      Learn more about station activities by following the space station blog.
      Image credit: NASA/Nichole Ayers
      View the full article
    • By NASA
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      NASA software engineer Brandon Carver updates how the main data acquisition software processes information at NASA’s Stennis Space Center, where he has contributed to the creation of the center’s first-ever open-source software.NASA/Danny Nowlin Syncom Space Services software engineer Shane Cravens, the chief architect behind the first-ever open-source software at NASA’s Stennis Space Center, verifies operation of the site’s data acquisition hardware.NASA/Danny Nowlin NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has released its first-ever open-source software, a peer review tool to facilitate more efficient and collaborative creation of systems applications, such as those used in its frontline government and commercial propulsion test work.
      “Everyone knows NASA Stennis as the nation’s premier rocket propulsion test site,” said David Carver, acting chief of the Office of Test Data and Information Management. “We also are engaged in a range of key technology efforts. This latest open-source tool is an exciting example of that work, and one we anticipate will have a positive and widespread impact.”
      The new NASA Data Acquisition System Peer Review Tool was developed over several years, built on lessons learned as site developers and engineers created software tools for use across the center’s sprawling test complex. It is designed to simplify and amplify the collaborative review process, allowing developers to build better and more effective software applications.
      The new NASA Stennis Peer Review tool was developed using the same software processes that built NDAS. As center engineers and developers created software to monitor and analyze data from rocket propulsion tests, they collaborated with peers to optimize system efficiency. What began as an internal review process ultimately evolved into the open-source code now available to the public.
      “We refined it (the peer review tool) over a period of time, and it has improved our process significantly,” said Brandon Carver (no relation), a NASA Stennis software engineer. “In early efforts, we were doing reviews manually, now our tool handles some of these steps for us. It has allowed us to focus more on reviewing key items in our software.”
      Developers can improve time, efficiency, and address issues earlier when conducting software code reviews. The result is a better, more productive product.
      The NASA Stennis tool is part of the larger NASA Data Acquisition System created at the center to help monitor and collect propulsion test data. It is designed to work with National Instruments LabVIEW, which is widely used by systems engineers and scientists to design applications. LabVIEW is unique in using graphics (visible icon objects) instead of a text-based programming language to create applications. The graphical approach makes it more challenging to compare codes in a review process.
      “You cannot compare your code in the same way you do with a text-based language,” Brandon Carver said. “Our tool offers a process that allows developers to review these LabVIEW-developed programs and to focus more time on reviewing actual code updates.”
      LabVIEW features a comparison tool, but NASA Stennis engineers identified ways they could improve the process, including by automating certain steps. The NASA Stennis tool makes it easier to post comments, pictures, and other elements in an online peer review to make discussions more effective.  
      The result is what NASA Stennis developers hope is a more streamlined, efficient process. “It really optimizes your time and provides everything you need to focus on right in front of you,” Brandon Carver said. “That’s why we wanted to open source this because when we were building the tool, we did not see anything like it, or we did not see anything that had features that we have.”
      “By providing it to the open-source community, they can take our tool, find better ways of handling things, and refine it,” Brandon Carver said. “We want to allow those groups to modify it and become a community around the tool, so it is continuously improved. Ultimately, a peer review is to make stronger software or a stronger product and that is also true for this peer review tool.
      “It is a good feeling to be part of the process and to see something created at the center now out in the larger world across the agency,” Brandon Carver said. “It is pretty exciting to be able to say that you can go get this software we have written and used,” he acknowledged. “NASA engineers have done this. I hope we continue to do it.”
      To access the peer review tool developed at NASA Stennis, visit NASA GitHub.
      Read More Share
      Details
      Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
  • Check out these Videos

×
×
  • Create New...