Jump to content

NASA: Some Icy Exoplanets May Have Habitable Oceans and Geysers


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A NASA study expands the search for life beyond our solar system by indicating that 17 exoplanets (worlds outside our solar system) could have oceans of liquid water, an essential ingredient for life, beneath icy shells. Water from these oceans could occasionally erupt through the ice crust as geysers. The science team calculated the amount of geyser activity on these exoplanets, the first time these estimates have been made. They identified two exoplanets sufficiently close where signs of these eruptions could be observed with telescopes.

The search for life elsewhere in the Universe typically focuses on exoplanets that are in a star’s “habitable zone,” a distance where temperatures allow liquid water to persist on their surfaces. However, it’s possible for an exoplanet that’s too distant and cold to still have an ocean underneath an ice crust if it has enough internal heating. Such is the case in our solar system where Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have subsurface oceans because they are heated by tides from the gravitational pull of the host planet and neighboring moons.

cassini_enceladus_geysers
NASA’s Cassini spacecraft captured this image of Enceladus on Nov. 30, 2010. The shadow of the body of Enceladus on the lower portions of the jets is clearly visible.
NASA/JPL-Caltech/Space Science Institute

These subsurface oceans could harbor life if they have other necessities, such as an energy supply as well as elements and compounds used in biological molecules. On Earth, entire ecosystems thrive in complete darkness at the bottom of oceans near hydrothermal vents, which provide energy and nutrients.

“Our analyses predict that these 17 worlds may have ice-covered surfaces but receive enough internal heating from the decay of radioactive elements and tidal forces from their host stars to maintain internal oceans,” said Dr. Lynnae Quick of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Thanks to the amount of internal heating they experience, all planets in our study could also exhibit cryovolcanic eruptions in the form of geyser-like plumes.” Quick is lead author of a paper on the research published on October 4 in the Astrophysical Journal.

The team considered conditions on 17 confirmed exoplanets that are roughly Earth-sized but less dense, suggesting that they could have substantial amounts of ice and water instead of denser rock. Although the planets’ exact compositions remain unknown, initial estimates of their surface temperatures from previous studies all indicate that they are much colder than Earth, suggesting that their surfaces could be covered in ice.

The study improved estimates of each exoplanet’s surface temperature by recalculating using the known surface brightness and other properties of Europa and Enceladus as models. The team also estimated the total internal heating in these exoplanets by using the shape of each exoplanet’s orbit to get the heat generated from tides and adding it to the heat expected from radioactive activity. Surface temperature and total heating estimates gave the ice layer thickness for each exoplanet since the oceans cool and freeze at the surface while being heated from the interior. Finally, they compared these figures to Europa’s and used estimated levels of geyser activity on Europa as a conservative baseline to estimate geyser activity on the exoplanets.

They predict that surface temperatures are colder than previous estimates by up to 60 degrees Fahrenheit (16 degrees Celsius). Estimated ice shell thickness ranged from about 190 feet (58 meters) for Proxima Centauri b and one mile (1.6 kilometers) for LHS 1140 b to 24 miles (38.6 kilometers) for MOA 2007 BLG 192Lb, compared to Europa’s estimated average of 18 miles (almost 29 kilometers). Estimated geyser activity went from just 17.6 pounds per second (about 8 kilograms/second) for Kepler 441b to 639,640 pounds/second (290,000 kilograms/second) for LHS 1140 b and 13.2 million pounds/second (six million kilograms/second) for Proxima Centauri b, compared to Europa at 4,400 pounds/second (2,000 kilograms/second).

“Since our models predict that oceans could be found relatively close to the surfaces of Proxima Centauri b and LHS 1140 b, and their rate of geyser activity could exceed Europa’s by hundreds to thousands of times, telescopes are most likely to detect geological activity on these planets,” said Quick, who is presenting this research December 12 at the American Geophysical Union meeting in San Francisco, California.

This activity could be seen when the exoplanet passes in front of its star. Certain colors of starlight could be dimmed or blocked by water vapor from the geysers. “Sporadic detections of water vapor in which the amount of water vapor detected varies with time, would suggest the presence of cryovolcanic eruptions,” said Quick. The water might contain other elements and compounds that could reveal if it can support life. Since elements and compounds absorb light at specific “signature” colors, analysis of the starlight would let scientists determine the geyser’s composition and evaluate the exoplanet’s habitability potential.

For planets like Proxima Centauri b that don’t cross their stars from our vantage point, geyser activity could be detected by powerful telescopes that are able to measure light that the exoplanet reflects while orbiting its star. Geysers would expel icy particles at the exoplanet’s surface which would cause the exoplanet to appear very bright and reflective.

The research was funded by NASA’s Habitable Worlds Program, the University of Washington’s Astrobiology Program, and the Virtual Planetary Laboratory, a member of the NASA Nexus for Exoplanet System Science coordination group.

Share

Details

Last Updated
Dec 13, 2023
Editor
William Steigerwald
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.
      RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.Credit: NASA/Goddard/Arizona State University. RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.
      LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.
      The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.
      This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.Credit: NASA/Goddard/Arizona State University.  LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University’s LRO Camera website
      Media Contact
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      lonnie.shekhtman@nasa.gov
      Share
      Details
      Last Updated Jun 20, 2025 EditorMadison OlsonContactMolly Wassermolly.l.wasser@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employee Naomi Torres sits inside the air taxi passenger ride quality simulator at NASA’s Armstrong Flight Research Center in Edwards, California, as the simulator moves during a study on Oct. 23, 2024. Research continues to better understand how humans may interact with these new types of aircraft.NASA/Steve Freeman NASA’s Advanced Air Mobility vision involves the skies above the U.S. filled with new types of aircraft, including air taxis. But making that vision a reality involves ensuring that people will actually want to ride these aircraft – which is why NASA has been working to evaluate comfort, to see what passengers will and won’t tolerate. 
      NASA is conducting a series of studies to understand how air taxi motion, vibration, and other factors affect ride comfort. The agency will provide the data it gathers to industry and others to guide the design and operational practices for future air taxis. 
      “The results of this study can guide air taxi companies to design aircraft that take off, land, and respond to winds and gusts in a way that is comfortable for the passengers,” said Curt Hanson, senior flight controls researcher for this project based at NASA’s Armstrong Flight Research Center in Edwards, California. “Passengers who enjoy their experience in an air taxi are more likely to become repeat riders, which will help the industry grow.” 
      The air taxi comfort research team uses NASA Armstrong’s Ride Quality Laboratory as well as the Human Vibration Lab and Vertical Motion Simulator at NASA’s Ames Research Center in California’s Silicon Valley to study passenger response to ride quality, as well as how easily and precisely a pilot can control and maneuver aircraft. 
      After pilots checked out the simulator setup, the research team conducted a study in October where NASA employees volunteered to participate as passengers to experience the virtual air taxi flights and then describe their comfort level to the researchers.  
      Curt Hanson, senior flight controls researcher for the Revolutionary Vertical Lift Technology project based at NASA’s Armstrong Flight Research Center in Edwards, California, explains the study about to begin to NASA employee and test subject Naomi Torres on Oct. 23, 2024. Behind them is the air taxi passenger ride quality simulator in NASA Armstrong’s Ride Quality Laboratory. Studies continue to better understand passenger comfort for future air taxi rides.NASA/Steve Freeman Using this testing, the team produced an initial study that found a relationship between levels of sudden vertical motion and passenger discomfort. More data collection is needed to understand the combined effect of motion, vibration, and other factors on passenger comfort. 
      “In the Vertical Motion Simulator, we can investigate how technology and aircraft design choices affect the handling qualities of the aircraft, generate data as pilots maneuver the air taxi models under realistic conditions, and then use this to further investigate passenger comfort in the Ride Quality and Human Vibration Labs,” said Carlos Malpica, senior rotorcraft flight dynamics researcher for this effort based at NASA Ames. 
      This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones. 
      Share
      Details
      Last Updated Jun 20, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Ames Research Center Drones & You Revolutionary Vertical Lift Technology Explore More
      2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 4 hours ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 2 days ago 4 min read NASA Tech to Measure Heat, Strain in Hypersonic Flight
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.

      Volume 42, Number 2
      Summer 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis.  Continue Reading
      Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to Discord
      By Robert Arrighi
      “Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
      Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 Tragedy
      By Kate Mankowski
      On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
      The Fight to Fund AgRISTARS
      By Brad Massey
      Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
      The Hubble Space Telescope: The Right Project at the Right Time
      By Jillian Rael
      This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
      Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA Archives
      By Alan Arellano
      The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
      Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990s
      By Lois Rosson
      On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
      Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in Space
      By Jennifer Ross-Nazzal
      In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency.  Continue Reading
      Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCall
      By Sandra Johnson
      As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration.  Continue Reading
      Inside the Archives: Biomedical Branch Files
      By Alejandra Lopez
      The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
      Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms
      NASA History Newsletters Explore More
      5 min read NASA History News and Notes–Spring 2025
      Article 3 months ago 6 min read NASA History News and Notes – Winter 2024
      Article 6 months ago 7 min read NASA History News and Notes – Fall 2024
      Article 9 months ago Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From Sunday, June 22 to Wednesday, July 2, two research aircraft will make a series of low-altitude atmospheric research flights near Philadelphia, Baltimore, and some Virginia cities, including Richmond, as well as over the Los Angeles Basin, Salton Sea, and Central Valley in California.
      NASA’s P-3 Orion aircraft, based out of the agency’s Wallops Flight Facility in Virginia, along with Dynamic Aviation’s King Air B200 aircraft, will fly over parts of the East and West coasts during the agency’s Student Airborne Research Program. The science flights will be conducted between June 22 and July 2, 2025. NASA/Garon Clark Pilots will operate the aircraft at altitudes lower than typical commercial flights, executing specialized maneuvers such as vertical spirals between 1,000 and 10,000 feet, circling above power plants, landfills, and urban areas. The flights will also include occasional missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface.
      The East Coast flights will be conducted between June 22 and Thursday, June 26 over Baltimore and near Philadelphia, as well as near the Virginia cities of Hampton, Hopewell, and Richmond. The California flights will occur from Sunday, June 29 to July 2.
      The flights, part of NASA’s Student Airborne Research Program (SARP), will involve the agency’s Airborne Science Program’s P-3 Orion aircraft (N426NA) and a King Air B200 aircraft (N46L) owned by Dynamic Aviation and contracted by NASA. The program is an eight-week summer internship program that provides undergraduate students with hands-on experience in every aspect of a scientific campaign.
      The P-3, operated out of NASA’s Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft outfitted with a six-instrument science payload to support a combined 40 hours of SARP science flights on each U.S. coast. The King Air B200 will fly at the same time as the P-3 but in an independent flight profile. Students will assist in the operation of the science instruments on the aircraft to collect atmospheric data.
      “The SARP flights have become mainstays of NASA’s Airborne Science Program, as they expose highly competitive STEM students to real-world data gathering within a dynamic flight environment,” said Brian Bernth, chief of flight operations at NASA Wallops.
      “Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,” said Bernth. “Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.”
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Jun 20, 2025 Related Terms
      Airborne Science Aeronautics Wallops Flight Facility View the full article
    • By NASA
      4 Min Read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      During the September 2023 daytime reentry of the OSIRIS-REx sample return capsule, the SCIFLI team captured visual data similar to what they're aiming to capture during Mission Possible. Credits: NASA/SCIFLI A NASA team specializing in collecting imagery-based engineering datasets from spacecraft during launch and reentry is supporting a European aerospace company’s upcoming mission to return a subscale demonstration capsule from space.
      NASA’s Scientifically Calibrated In-Flight Imagery (SCIFLI) team supports a broad range of mission needs across the agency, including Artemis, science missions like OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), and NASA’s Commercial Crew Program. The SCIFLI team also supports other commercial space efforts, helping to develop and strengthen public-private partnerships as NASA works to advance exploration, further cooperation, and open space to more science, people, and opportunities.

      Later this month, SCIFLI intends to gather data on The Exploration Company’s Mission Possible capsule as it returns to Earth following the launch on a SpaceX Falcon 9 rocket. One of the key instruments SCIFLI will employ is a spectrometer detects light radiating from the capsule’s surface, which researchers can use to determine the surface temperature of the spacecraft. Traditionally, much of this data comes from advanced Computational Fluid Dynamics modeling of what happens when objects of various sizes, shapes, and materials enter different atmospheres, such as those on Earth, Mars, or Venus.
      “While very powerful, there is still some uncertainty in these Computational Fluid Dynamics models. Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets,” said Carey Scott, SCIFLI capability lead at NASA’s Langley Research Center in Hampton, Virginia.
      A rendering of a space capsule from The Exploration Company re-entering Earth’s atmosphere.
      Image courtesy of The Exploration CompanyThe Exploration Company The SCIFLI team will be staged in Hawaii and will fly aboard an agency Gulfstream III aircraft during the re-entry of Mission Possible over the Pacific Ocean.
      “The data will provide The Exploration Company with a little bit of redundancy and a different perspective — a decoupled data package, if you will — from their onboard sensors,” said Scott.
      From the Gulfstream, SCIFLI will have the spectrometer and an ultra-high-definition telescope trained on Mission Possible. The observation may be challenging since the team will be tracking the capsule against the bright daytime sky. Researchers expect to be able to acquire the capsule shortly after entry interface, the point at roughly 200,000 feet, where the atmosphere becomes thick enough to begin interacting with a capsule, producing compressive effects such as heating, a shock layer, and the emission of photons, or light.
      Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets.
      Carey Scott
      SCIFLI Capability Lead

      In addition to spectrometer data on Mission Possible’s thermal protection system, SCIFLI will capture imagery of the parachute system opening. First, a small drogue chute deploys to slow the capsule from supersonic to subsonic, followed by the deployment of a main parachute. Lastly, cloud-cover permitting, the team plans to image splashdown in the Pacific, which will help a recovery vessel reach the capsule as quickly as possible.
      If flying over the ocean and capturing imagery of a small capsule as it zips through the atmosphere during the day sounds difficult, it is. But this mission, like all SCIFLI’s assignments, has been carefully modeled, choreographed, and rehearsed in the months and weeks leading up to the mission. There will even be a full-dress rehearsal in the days just before launch.
      Not that there aren’t always a few anxious moments right as the entry interface is imminent and the team is looking out for its target. According to Scott, once the target is acquired, the SCIFLI team has its procedures nailed down to a — pardon the pun — science.
      “We rehearse, and we rehearse, and we rehearse until it’s almost memorized,” he said.
      Ari Haven, left, asset coodinator for SCIFLI’s support of Mission Possible, and Carey Scott, principal engineer for the mission, in front of the G-III aircraft the team will fly on.
      Credit: NASA/Carey ScottNASA/Carey Scott The Exploration Company, headquartered in Munich, Germany, and Bordeaux,
      France, enlisted NASA’s support through a reimbursable Space Act Agreement and will use SCIFLI data to advance future capsule designs.
      “Working with NASA on this mission has been a real highlight for our team. It shows what’s possible when people from different parts of the world come together with a shared goal,” said Najwa Naimy, chief program officer at The Exploration Company. “What the SCIFLI team is doing to spot and track our capsule in broad daylight, over the open ocean, is incredibly impressive. We’re learning from each other, building trust, and making real progress together.”
      NASA Langley is known for its expertise in engineering, characterizing, and developing spacecraft systems for entry, descent, and landing. The Gulfstream III aircraft is operated by the Flight Operations Directorate at NASA’s Armstrong Flight Research Center in Edwards, California.
      Share
      Details
      Last Updated Jun 18, 2025 EditorJoe AtkinsonContactJoe Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center General Space Operations Mission Directorate Explore More
      4 min read Career Exploration: Using Ingenuity and Innovation to Create ‘Memory Metals’
      Article 20 hours ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 23 hours ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...