Jump to content

NASA Kennedy Space Center’s Top 20 Stories of 2023


Recommended Posts

  • Publishers
Posted

Here’s a look back at 2023’s most significant events at NASA’s Kennedy Space Center in Florida:

JANUARY
Day of Remembrance Marks 20th Anniversary of Columbia Tragedy 

NASA senior management and guests paid tribute to the crew members of space shuttle Columbia, as well as other astronauts who perished in the line of duty, during the agency’s Annual Day of Remembrance held at the Kennedy Space Center Visitor Complex.   

ksc-20230126-ph-kls01-0121orig.jpg?w=204
NASA’s Day of Remembrance
NASA/Kim Shiflett

JANUARY
Facilities, Spacecraft Prepped for Artemis II Mission 

Teams with Exploration Ground Systems began upgrading and modifying facilities at Kennedy to support Artemis II, paving the way for human exploration to the Moon and Mars. Artemis II will be the first crewed flight of the agency’s Space Launch System rocket and Orion spacecraft.   

NASA’s mobile launcher, carried atop the crawler-transporter 2, arrives at the entrance to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.
NASA’s mobile launcher arrives at the Vehicle Assembly Building
NASA/Ben Smegelsky

FEBRUARY
‘Famous’ Eagles Build New Nest at Kennedy

When storms badly damaged their original nest at the Florida spaceport, a well-known pair of American bald eagles built a new home nearby along Kennedy Parkway, providing a magnificent view of the majestic birds in their natural habitat.   

KSC-20230120-PH-JBS01_0048~large.jpg?w=1
A southern bald eagle occupies its new nest
NASA/Ben Smegelsky

FEBRUARY
New Orion Test Article Makes a Splash

NASA’s Landing and Recovery team completed a rigorous round of testing on the new mock-up of the agency’s Orion spacecraft. This test article will be used to train NASA, Navy, and other Department of Defense personnel to retrieve astronauts from the Pacific Ocean after splashing down on Artemis Moon missions.   

KSC-20230130-PH-KLS01_0078~large.jpg?w=1
The Crew Module Test Article in action
NASA/Kim Shiflett

MARCH
Crew-6 Lights up Florida Early-Morning Sky

A Falcon 9 rocket and Crew Dragon Endeavour spacecraft roared off of Kennedy’s Launch Pad 39A at 12:34 a.m. EST March 2, kickstarting NASA’s SpaceX Crew-6 mission. The launch carried NASA astronauts Stephen Bowen and Woody Hoburg, along with UAE (United Arab Emirates) astronaut Sultan Alneyadi and Roscosmos cosmonaut Andrey Fedyaev to the International Space Station for a six-month science expedition mission.  

NHQ202302250006~large.jpg?w=1920&h=1277&
NASA’s SpaceX Crew-6 on the launch pad
NASA/Joel Kowsky

MARCH
Crew-5 Comes Back to Earth

NASA astronauts Nicole Mann and Josh Cassada, JAXA (Japan Aerospace Exploration Agency) astronaut Koichi Wakata, and Roscosmos cosmonaut Anna Kikina splashed down safely in the SpaceX Dragon Endurance in the Gulf of Mexico off the coast of Tampa, Florida, at 9:02 p.m. EST March 11, returning to Earth after 157 days in space.  

NHQ202210010022~large.jpg?w=1920&h=855&f
Crew-5 astronauts return to Earth
NASA/Joel Kowsky

MARCH
CRS-27 Launches to the Space Station

At 8:30 p.m. EDT March 14, SpaceX’s Falcon 9 rocket rumbled off the pad at Kennedy’s Launch Complex 39A, starting Dragon’s two-day journey to the International Space Station to deliver new science investigations, supplies, and equipment for Expedition 68 and 69 crews aboard the orbiting laboratory.

KSC-20230314-PH-SPX02_0004~large.jpg?w=1
CRS-27 liftoff
SpaceX

MARCH
Swamp Works Celebrates a Decade of Discoveries

In 2023, Swamp Works, which drew its inspiration from Lockheed Martin’s Skunk Works in California, celebrated 10 years. The facility is devoted to innovation and leveraging skills and capabilities across the center, focusing on granular mechanics and regolith operations, applied chemistry, electrostatics and surface physics, advanced materials and systems, applied physics, and corrosion technology.  

KSC-20220728-PH-FMX01_0051~large.jpg?w=1
ISRU Pilot Excavator testing inside Swamp Works
NASA/Frank Michaux

MAY
Astronauts Complete Second All-Private Mission

Four private astronauts completed a successful Axiom Mission 2, the second all-private astronaut mission to the space station. Axiom Space astronauts Peggy Whitson, John Shoffner, Ali Alqarni, and Rayyanah Barnawi spent 10 days on the orbiting laboratory after lifting off at 5:37 p.m. EDT on May 21 from Launch Complex 39A at Kennedy Space Center.

iss069e014094~large.jpg?w=1920&h=1280&fi
The Axiom Mission-2 and Expedition 69 crew members aboard the International Space Station
NASA

JUNE
Solar Arrays Delivered on CRS-28

Several thousand pounds of important research, crew supplies and hardware, including new solar arrays, were delivered to the space station following the June 5 launch of SpaceX’s 28th commercial resupply services mission for NASA from Kennedy’s Launch Complex 39A.  

SpaceX's Falcon 9 rocket lifts off from Kennedy Space Center's Launch Complex 39A in Florida.
CRS-28 liftoff
SpaceX

JULY
Artemis Crews Get New Ride to the Pad

Teams from manufacturer Canoo Technologies Inc. of Torrance, California, delivered three specially designed, fully electric, environmentally friendly crew transportation vehicles to Kennedy on July 11. The vehicles will take Artemis crews on the final Earth-bound leg of their journey to the Moon before boarding their rocket and spacecraft.  

KSC-20230711-PH-ILW01_0031~large.jpg?w=1
Fully electric, environmentally friendly crew transportation vehicles arrived at Kennedy
NASA/Isaac Watson

AUGUST
Crew-7 Carries International Crew to Space Station   

A Dragon spacecraft, named Endurance, launched atop a Falcon 9 rocket, carrying NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov to the space station on NASA’s SpaceX Crew-7 mission. Liftoff occurred at 3:27 a.m. EDT on Saturday, Aug. 26.  

NHQ202308260003~large.jpg?w=1919&h=990&f
NASA’s SpaceX Crew-7
NASA/Joel Kowsky

AUGUST
Artemis II Crew Meets Their Ride Around the Moon 

Inside the high bay of Kennedy’s Neil Armstrong Operations and Checkout Building, Artemis II NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen visited the Orion spacecraft that will take them on a 10-day journey around the Moon as the first Artemis crew.  

KSC-20230808-PH-KLS02_0098~large.jpg?w=1
Artemis II crew members view their Orion spacecraft
NASA/Kim Shiflett

SEPTEMBER
Crew-6 Completes Six-Month Mission  

NASA astronauts Stephen Bowen and Woody Hoburg, along with UAE (United Arab Emirates) astronaut Sultan Alneyadi and Roscosmos cosmonaut Andrey Fedyaev splashed down safely in SpaceX’s Dragon spacecraft, named Endeavour, in the Atlantic Ocean off the coast of Jacksonville, Florida, at 12:17 a.m. EDT Monday, Sept. 24, after 186 days in space.  

KSC-20230223-PH-KLS01_0265~large.jpg?w=1
NASA’s SpaceX Crew-6 astronauts return to Earth
NASA/Kim Shiflett

SEPTEMBER
Artemis II Astronauts Conduct Launch-Day Demonstration 

NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, practiced the procedures they will undergo on launch day to prepare for their mission around the Moon. The Artemis II crew and teams with NASA’s Exploration Ground Systems Program successfully completed the critical ground system tests at Kennedy on Sept. 20. 

KSC-20230920-PH-FMX01_0474~large.jpg?w=1
Artemis II astronauts at Launch Pad 39B
NASA/Frank Michaux

OCTOBER
Psyche Launches to a Metal Asteroid

NASA’s Psyche spacecraft began its six-year voyage to an asteroid of the same name, a metal-rich world that could tell us more about the formation of rocky planets, after successfully launching aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at Kennedy on Oct. 13.

NHQ202310130018~large.jpg?w=1920&h=1424&
Psyche mission lifts off
NASA/Aubrey Gemignani

OCTOBER
Progress Continues Toward NASA’s Boeing Crew Flight to Station 

NASA and Boeing are working to complete the agency’s verification and validation activities ahead of the Starliner spacecraft’s first flight with astronauts to the International Space Station. While Boeing is targeting March 2024 to have the spacecraft ready for flight, teams decided during a launch manifest evaluation that a launch in April will better accommodate upcoming crew rotations and cargo resupply missions this spring.  

KSC-20230119-PH-BOE01_0003~large.jpg?w=1
The Starliner team works on module for NASA’s Boeing Crew Flight Test
Boeing/John Grant

OCTOBER
Sea Turtle Nests Set Kennedy Record  

A record number of sea turtle nests were built on the undisturbed beaches of the Florida spaceport in 2023. Biologists counted 13,935 sea turtle nests along Kennedy’s shoreline during the 2023 nesting season, 639 more nests than 2022 and the most found on center in a single year since record-keeping began in 1984.  

Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
Sea turtle hatchlings at Kennedy Space Center in Florida
NASA

NOVEMBER
NASA, SpaceX Launch New Science, Hardware to Space Station 

Following a successful launch of NASA’s SpaceX 29th commercial resupply mission from Kennedy’s Launch Complex 39A, scientific experiments and technology demonstrations – including studies of enhanced optical communications and measurement of atmospheric waves – were delivered to the space station.  

KSC-20231019-PH-SPX01_0001~orig.jpg?w=95
The Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal loaded into Dragon’s unpressurized spacecraft trunk
SpaceX

DECEMBER
Kennedy Celebrates 25 Years of International Space Station Science

NASA Kennedy marked a quarter of a century of assembling and processing components and science missions for the International Space Station. In December 1998, the Unity module of the International Space Station was carried to orbit on STS-88 from Kennedy, helping kick off a 25-year legacy that includes over 3700 science investigations conducted to date on the orbiting laboratory by 273 people from 21 countries.   

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Avatars for Astronaut Health to Fly on NASA’s Artemis II
      An organ chip for conducting bone marrow experiments in space. Emulate NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.
      The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 
      AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”
      Nicky Fox
      Associate Administrator, NASA Science Mission Directorate
      “AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”
      The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.
      Organ-on-a-chip: mimic for human health
      Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 
      Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.
      Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.
      Bone marrow as bellwether
      The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.
      Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.
      Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.
      To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.
      Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.
      Passenger for research
      “For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”
      During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.
      For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”
      Lisa Carnell
      Director of NASA’s Biological and Physical Sciences Division
      Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.
      Keep Exploring BPS Scientific Goals
      Goals



      Precision Health



      AVATAR



      Quantum Leaps


      Biological & Physical Sciences Division (BPS)

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Rendezvous and Capture
    • By Amazing Space
      NASA / SPACEX CRS-23 ISS RESUPPLY LAUNCH LIVE
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
  • Check out these Videos

×
×
  • Create New...