Jump to content

Six Finalists Named in NASA’s $3.5 Million Break the Ice Challenge


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A Graphic of the Break the Ice Lunar Challenge Logo placed on a photo of the Moon.

By Savannah Bullard

The stage is set for the finale of NASA’s Break the Ice Lunar Challenge.

Conceived in 2020, Break the Ice tasked innovators with creating robotic systems that can traverse the volatile terrain of the Lunar South Pole. These robots must be able to dig into the Moon’s regolith – the dusty, icy “dirt” that makes up the lunar surface – and transport it to a secondary location for in-situ resource utilization (ISRU) processing.

If deployed on a NASA mission, these systems would operate in the permanently shadowed regions of the Moon, an area that receives no sunlight. These technologies must survive bitterly cold conditions and cannot rely on solar power regeneration. If successful, NASA can excavate the regolith from this area and use the resources derived from the materials, like frozen water, to aid astronauts living on the Moon.

“Our goal is to provide solutions to make living on the Moon a reality, and Break the Ice directly contributes to that mission,” said Denise Morris, program manager for NASA’s Centennial Challenges. “Excavating lunar regolith before humans arrive on the Moon will allow us to find uses for that material before they get there – if we could build a lunar habitat out of the regolith or extract the water for our astronauts to drink, that means less mass on our vehicles and less work for our crews.”

Phase 1 of the competition focused on designing systems that could achieve three components: excavation, travel, and delivery. Of the 31 teams who submitted eligible proposals, 13 won cash prizes ranging from $25,000 to $125,000.

Phase 2: Level 1 opened in June 2022. Consisting of Phase 1 winners and newcomers, 25 teams developed their initial designs into prototypes with technical reports, engineering designs, and test plans. Six months later, 13 U.S. semifinalists were named, each earning an equal share of $500,000. Two international teams were also recognized as semifinalists, though they were not eligible to receive monetary prizes from NASA.

In Phase 2: Level 2, the finalist pool comprised of garage inventors, academics, industry professionals, and hobbyists from 11 U.S. states, the Netherlands, and India. Nine of these teams attempted a 15-day demonstration trial at their own testing sites to prove the capabilities of their prototypes. The teams live-streamed the tests and took turns hosting representatives from Centennial Challenges for in-person observations.

“What impresses me the most with this batch of competitors is their innate ability to each find unique ways to approach the solution,” said Break the Ice Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group. “Each site visit provided our subject matter experts with new ways to think about this technology and operations, and some of these teams expanded our expectations for how to bridge this technology gap.”

The Phase 2: Level 2 winning teams are:

1st Place ($300,000): Starpath Robotics (San Francisco, CA)

2nd Place ($200,000): Terra Engineering (Gardena, CA)

3rd Place ($125,000): The Ice Diggers (Golden, CO)

Runners Up ($75,000 each):

  • Cislune Excavators (Los Angeles, CA)
  • Space Trajectory (Brookings, SD)
  • MTU Planetary Surface Technology Development Lab (Houghton, MI)

In this last round of competitions, scheduled to take place in the spring of 2024, the above winners will bring their prototypes to a NASA-designated test facility for a series of head-to-head matchups. Expected testing includes excavation under reduced gravity – using gravity off-loading – and transportation over complex terrain, including rocks, craters, slopes, turns, and loose granular soil.

“Bringing the competitors to one central location is the best way to end a challenge like Break the Ice because it provides us with an opportunity to observe and test their designs in a common relevant environment,” said Mark Hilburger, a senior research engineer in the Space Technology Exploration Directorate at NASA’s Langley Research Center in Hampton, Virginia, and principal technologist for Break the Ice. “These technologies must be thoroughly tested to survive on the Moon, so a test opportunity like this helps the teams prove if their prototypes are up to the task.”

This final round of competition will offer up to $1.5 million in cash prizes, split between first place ($1 million) and second place ($500,000). NASA will also award opportunities for teams to test their concepts at one of the agency’s Thermal Vacuum Chambers, which can simulate the temperature and atmospheric pressure conditions at the Lunar South Pole.

The Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center  in Huntsville, Alabama, with support from NASA’s Kennedy Space Center in Florida. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program led by NASA’s Space Technology Mission Directorate and managed at NASA Marshall. Ensemble Consultancy supports the management of competitors for this challenge.

Jonathan Deal
NASA’s Marshall Space Flight Center
256-544-0034
jonathan.e.deal@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Students prepare their robots to enter Artemis Arena during NASA’s Lunabotics competition on May 20, 2025, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. NASA/Isaac Watson As college students across the country embark upon the academic year, NASA is giving them something else to look forward to – the agency’s 2026 Lunabotics Challenge. Teams interested in participating can submit their applications and supporting materials through NASA’s Stem Gateway portal beginning Monday, Sept. 8.
      Key dates and challenge details are available in the 2026 Lunabotics Challenge Guidebook. Once all applications and supporting materials are received and evaluated, NASA will notify the selected teams to begin the challenge.
      Student teams participating in this year’s challenge will create robots capable of building berms out of lunar regolith – the loose, fragmental material on the Moon’s surface. Structures like these will be important during lunar missions as blast protection during lunar landings and launches, shading for cryogenic propellant tank farms, radiation shielding around nuclear power plants, and other uses critical to future Moon missions.
      “We are excited to continue the Lunabotics competition for universities as NASA develops new Moon to Mars technologies for the Artemis program,” said Robert Mueller, senior technologist at NASA, as well as co-founder and chief judge of the Lunabotics competition. “Excavating and moving regolith is a fundamental need to build infrastructure on the Moon and Mars and this competition creates 21st century skills in the future workforce.”
      An in-person qualifying event will be held May 12-17, 2026, at the University of Central Florida’s Space Institute’s Exolith Lab in Orlando. From this round, the top 10 teams will be invited to bring their robots to the final competition on May 19-21, at the Kennedy Space Center Visitor Complex’s Artemis Arena in Florida, which has an area filled with a lunar regolith simulant. The team scoring the most points will receive the Lunabotics Grand Prize and participate in an exhibition-style event at NASA Kennedy.
      By encouraging innovative construction techniques and assessing student designs and data the same way it does its own prototypes, NASA casts a wider net to find innovative solutions to challenges inherent in future Artemis missions, like developing future lunar excavators, in-situ resource utilization capabilities, and living on the Moon or Mars. With its multidisciplinary approach, Lunabotics also serves as a workforce pipeline, with teams gaining valuable hands-on experience in computer coding, engineering, manufacturing, fabricating, and other crucial skills, while also receiving technical expertise in space technology development.
      NASA’s Lunabotics Challenge, held annually since 2010, is one of several Artemis Student Challenges. The two-semester competition provides U.S. college and technical school teams an opportunity to design, build, and operate a prototype lunar robot using NASA systems engineering processes. Competitions help NASA get innovative design and operational data, reduce risks, and cultivate new ideas needed to return to the Moon under the Artemis campaign to prepare for human exploration of Mars.
      To learn more about Lunabotics, visit:
      https://www.nasa.gov/learning-resources/lunabotics-challenge/
      View the full article
    • By NASA
      This competition provides a hands-on opportunity for participants to gain critical skills in engineering, computing, electronics, and more that will be required for America’s technical workforce. If you are in sixth to 12th-grade at a U.S. public, private, or charter school – including those in U.S. territories – your challenge is to team up with your schoolmates and develop a science or technology experiment idea for one of the following NASA TechRise flight vehicles:
      Suborbital-Spaceship with approximately 3 minutes of microgravity. High-Altitude Balloon with approximately 4 to 8 hours of flight time at 70,000 to 95,000 feet and exposure to Earth’s atmosphere, high-altitude radiation, and perspective views of our planet. Award: $1,500 each to 60 winning teams
      Open Date: September 4, 2025
      Close Date: November 3, 2025
      For more information, visit: https://www.futureengineers.org/nasatechrise
      View the full article
    • By NASA
      NASA/Rachel Tilling Sea ice is frozen seawater that floats in the ocean. This photo, taken from NASA’s Gulfstream V Research Aircraft on July 21, 2022, shows Arctic sea ice in the Lincoln Sea north of Greenland.
      This image is the NASA Science Image of the Month for September 2025. Each month, NASA’s Science Mission Directorate chooses an image to feature, offering desktop wallpaper downloads, as well as links to related topics, activities, and games.
      Text and image credit: NASA/Rachel Tilling
      View the full article
    • By NASA
      The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day. The Rock and Roll with NASA Challenge seeks that breakthrough. If you can imagine a lightweight, compliant wheel that stays tough at higher speeds while carrying lots of  cargo, your ideas could set the pace for surface missions to follow. For this phased Challenge, Phase 1 rewards the best concepts and analyses, Phase 2 funds prototypes, and Phase 3 puts the best wheels through a live obstacle course simulating the lunar terrain. Along the way, you’ll receive feedback from NASA mobility engineers and the chance to see your hardware pushed to its limits.  In Phase 3, to prove concepts, NASA is using MicroChariot, a nimble, 45 kg test rover that will test the best designs from Phase 1 & Phase 2 at the Johnson Space Center Rockyard in Houston, Texas. Whether you’re a student team, a garage inventor, or a seasoned aerospace firm, this is your opportunity to rewrite the playbook of planetary mobility and leave tread marks on the future of exploration. Follow the challenge, assemble your crew, and roll out a solution that takes humanity back to the Moon.
      Award: $155,000 in total prizes
      Open Date: Phase 1 – August 28, 2025; Phase 2 – January 2026; Phase 3 – May 2026
      Close Date: Phase 1 – November 4, 2025; Phase 2 – April 2026; Phase 3 – June 2026
      For more information, visit: https://www.herox.com/NASARockandRoll
      View the full article
    • By NASA
      NASA’s Human Lander Challenge (HuLC) is an initiative supporting its Exploration Systems Development Mission Directorate’s (ESDMD’s) efforts to explore innovative solutions for a variety of known technology development areas for human landing systems (HLS). Landers are used to safely ferry astronauts to and from the lunar surface as part of the mission architecture for NASA’s Artemis campaign. Through this challenge, college students contribute to the advancement of HLS technologies, concepts, and approaches. Improvements in these technology areas have the potential to revolutionize NASA’s approach to space exploration, and contributions from the academic community are a valuable part of the journey to discovery. HuLC is open to teams comprised of full-time or part-time undergraduate and/or graduate students at an accredited U.S.-based community college, college, or university. HuLC projects allow students to incorporate their coursework into real aerospace design concepts and work together in a team environment. Interdisciplinary teams are encouraged.
      Award: $126,000 in total prizes
      Open Date: August 29, 2025
      Close Date: March 4, 2026
      For more information, visit: https://hulc.nianet.org/
      View the full article
  • Check out these Videos

×
×
  • Create New...