Jump to content

Hubble Celebrates 30th Anniversary of Servicing Mission 1


Recommended Posts

  • Publishers
Posted

6 min read

Hubble Celebrates 30th Anniversary of Servicing Mission 1

An astronaut working in the cargo bay a very blue earth in the background.
Astronaut F. Story Musgrave works in the space shuttle Endeavour’s cargo bay while the solar array panels on the Hubble Space Telescope are deployed during the final Servicing Mission 1 spacewalk.
NASA

In the pre-dawn hours on Dec. 2, 1993, the space shuttle Endeavour launched from Kennedy Space Center in Florida on a critical mission to repair NASA’s Hubble Space Telescope.

Hubble was designed to be serviced in space with components that astronauts can slide in and out of place. But prior to launch, no one expected the first servicing mission to be of such urgency.

For three years, Hubble had been the punchline of late-night comics and editorial cartoons: the telescope that couldn’t see straight. Since its deployment in 1990, the telescope had been beaming blurry images back to Earth, the result of a flaw in the shape of its primary mirror. Though the mirror was off by only one-fiftieth the width of a human hair, the error had devastating consequences: the light from the mirror didn’t focus quite right. While the images were still better than those taken from Earth and science was still possible, their quality was not what the world expected.

The sense that you got was everybody was looking at the servicing and repair of the Hubble Space Telescope as the mission that could prove NASA’s worth … There was this overarching focus and pressure on the success of this mission.

Richard Covey

Richard Covey

Servicing Mission 1 Astronaut

Servicing Mission 1 was the solution. Aboard the shuttle were the Wide Field and Planetary Camera 2 (WFPC2) and Corrective Optics Space Telescope Axial Replacement (COSTAR), along with other critical components to upgrade the telescope. WFPC2, responsible for the telescope’s visually impactful images, had built-in corrective optics to compensate for the mirror flaw and would replace the Wide Field/Planetary Camera that Hubble launched with. COSTAR was a refrigerator-sized component containing a constellation of mirrors, some only the size of a U.S. nickel, intended to correct and redirect light to the telescope’s other cameras and spectrographs.

An astronaut at one of the gold covered cargo bay carriers with the earth and Hubble off to the right.
Astronaut Kathryn C. Thornton grips a tool to perform servicing mission tasks on the Hubble Space Telescope during the fourth spacewalk of Servicing Mission 1.
NASA

The shuttle’s crew of seven astronauts was aware that not only Hubble’s fate was on their shoulders, but the public perception of NASA and its space program as well.

“If the Hubble repair is a failure, we can write off space science for the foreseeable future,” John Bahcall, the late astrophysicist who advocated for the telescope and a member of its science working group, told the New York Times in 1993.

Credit: NASA’s Goddard Space Flight Center; Lead Producer: Grace Weikert

On Dec. 2, 2023, NASA commemorates the 30th anniversary of Servicing Mission 1 and its success in transforming Hubble into one of NASA’s greatest triumphs: a shining example of human ingenuity in the face of adversity.

During one of the most complex spacewalking missions ever attempted, astronauts conducted five extravehicular activities, totaling over 35 hours. They removed the High Speed Photometer instrument to add COSTAR and swapped out the original Wide Field/Planetary Camera for the Wide Field and Planetary Camera 2. They also installed other critical components to upgrade the telescope.

The astronauts of STS-61, the first servicing mission to Hubble, pose for an unofficial portrait while in orbit.
The crew of Servicing Mission 1 poses for a portrait on the space shuttle. In the front row from left to right are Swiss scientist Claude Nicollier, mission specialist; Kenneth D. Bowersox, pilot; and Richard O. Covey, mission commander. In the back row are the spacewalkers on this flight: F. Story Musgrave, payload commander; Jeffrey A. Hoffman, mission specialist; Kathryn D. Thornton, mission specialist; and Thomas D. Akers, mission specialist.
NASA

At 1 a.m. on December 18, 1993, about a week after the mission had ended, astronomers gathered around computers at the Space Telescope Science Institute in Baltimore to witness the first new image from the telescope: a star, shining clear and pristine in the image without the hazy effects of Hubble’s flawed mirror. The new images were so dramatically different that even though the telescope needed around 13 weeks for adjustment to reach its full capabilities, NASA released them early. “It’s fixed beyond our wildest expectations,” said Ed Weiler, Hubble chief scientist during SM1, at a January 1994 press conference.

The look on people’s faces as this picture came up – this was an old [cathode ray] tube-type TV. It took a while for it to build up, but it got clearer and clearer and clearer. Everybody starts shouting.

Ed Weiler

Ed Weiler

Hubble chief scientist during SM1

This two-pane image shows a spiral galaxy that appears blurry on the left, with cloudy arms and a hazy center. A much clearer image of the same spiral galaxy is in the panel on the right, showing a defined core and more distinct arms.
Images of spiral galaxy M100 show the improvement in Hubble’s vision between Wide Field/Planetary Camera and its replacement instrument, the Wide Field and Planetary Camera 2.
NASA, STScI

Senator Barbara Mikulski of Maryland, who had advocated diligently for Hubble, was the first to show off the new images to the public at the Jan. 13 press conference. “I’m happy to announce today that after its launch in 1990 and some of its earlier disappointments, the trouble with Hubble is over,” she said.

Sen. Barbara Mikulski is on the left side of the image. To her right she holds an image comprised of two Hubble images. The image on the left is of a star before the installation of COSTAR. It is bright-white and extended, filling the frame. To the right is an image of a star after COSTAR was installed. The star is a bright-white disk in the center of the image.
Sen. Barbara Mikulski displays a picture showing the difference between a star image taken before COSTAR’s installation and the same star after Servicing Mission 1 during the Jan. 13, 1993 press conference announcing the success of the mission.
NASA

Though Servicing Mission 1 is best remembered for its resolution of Hubble’s blurry vision, it accomplished a host of additional tasks that helped transform the telescope into the astronomical powerhouse it remains today.

By the time Servicing Mission 1 launched, the telescope’s gyroscopes – delicate pieces of equipment required to steer and point Hubble – were already breaking down. Three of the six gyroscopes, or gyros, aboard Hubble had failed. The other three – typically kept as backups – were in operation, the minimum number needed to keep Hubble collecting science data. Astronauts replaced four gyroscopes, a fix that would help keep the telescope running smoothly for several years.

Early in Hubble’s time in orbit, NASA discovered that the telescope’s solar arrays would expand and contract excessively in the alternating heat and cold of space as the telescope traveled in and out of sunlight, causing them to vibrate. This forced engineers to use Hubble’s computing capacity to compensate for the “jitter” and reduced observation time. Astronauts replaced Hubble’s solar arrays with new versions that brought the natural jitter down to acceptable levels.

Astronauts also performed an augmentation whose vital importance would become clear a year later: upgrading Hubble’s flight computer with a co-processor and associated memory. Just weeks before the disintegrating comet Shoemaker-Levy 9 collided with Jupiter in 1994, Hubble went into a protective “safe mode” due to a memory unit problem in the main computer. Engineers were able to use that co-processor’s memory to fix the problem, capturing stunning images of the gas giant being pummeled by comet fragments.

Servicing Mission 1’s impact echoed far beyond Hubble. The mission was a showcase for tasks that could be done in space, proving humanity’s ability to perform highly complex work in orbit. The lessons learned from training for Hubble and from the servicing work itself would be built upon for other astronaut missions, including the four subsequent servicing visits to Hubble between 1997-2009. These additional missions to Hubble would enable the installation of new, cutting-edge instruments, repair of existing science instruments, and the replacement of key hardware, keeping Hubble at the forefront of astrophysics exploration.

Further, the lessons learned from Servicing Mission 1 were a guiding force for work on the International Space Station, and for missions yet to occur. “A lot of the knowledge that was developed there transferred directly to construction of the International Space Station and it’ll transfer to the things we do with [the future orbiting lunar space station] Gateway someday,” said Kenneth Bowersox, associate administrator for NASA’s Space Operations Mission Directorate, who was also astronaut on Servicing Mission 1. “And it’ll apply to things we do on the Moon and in deep space, going to Mars and beyond. It all links.”

To celebrate Servicing Mission 1, NASA is releasing a series of videos over the next two weeks featuring key players – astronauts, scientists, engineers, and more – as they reflect on the struggles and triumphs of that time, as well as the emotional and personal impact that Hubble and SM1 had on their lives. Follow @NASAHubble on X, Instagram, and Facebook, or go to nasa.gov/hubble to watch as the series kicks off this weekend.

Share

Details

Last Updated
Dec 01, 2023
Editor
Andrea Gianopoulos
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Video: 00:03:30 Two meteorological missions – Meteosat Third Generation Sounder-1 (MTG-S1) and the Copernicus Sentinel-4 mission – have launched on board a SpaceX Falcon 9 from Cape Canaveral in Florida, US.
      Both are world-class Earth observation missions developed with European partners to address scientific and societal challenges.  
      The MTG-S1 satellite will generate a completely new type of data product, especially suited to nowcasting severe weather events, with three-dimensional views of the atmosphere. It is the second in the MTG constellation to be prepared for orbit and is equipped with the first European operational Infrared Sounder instrument.
      Copernicus Sentinel-4 will be the first mission to monitor European air quality from geostationary orbit, providing hourly information that will transform how we predict air pollution across Europe, using its ultraviolet, visible, near-infrared light (UVN) spectrometer.
      View the full article
    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Text credit: ESA
      Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
      View the full article
  • Check out these Videos

×
×
  • Create New...