Jump to content

40 Years Ago: STS-9, the First Spacelab Science Mission


Recommended Posts

  • Publishers
Posted

On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines.

The STS-9 crew patch Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency The payload patch for Spacelab 1
Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1.

In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions.

Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay
Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay.

The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983.

In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs
Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs.

Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8.

The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas
Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas.

-Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module
Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module.

Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses
Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses.

On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston.

View of the Spacelab module in the shuttle’s payload bay Several STS-9 crew members struggle to open the hatch to the transfer tunnel Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module
Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module.

Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place.

sts-9-18-inside-spacelab-s09-15-755.jpg Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments Garriott, front, and Lichtenberg at work in the Spacelab module
Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module.

The rotating dome experiment to study visual vestibular interactions Owen K. Garriott prepares to place blood samples in a passive freezer Inflight photograph of the STS-9 crew
Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew.

The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right STS-9 crew Earth observation photograph Hong Kong STS-9 crew Earth observation photograph of Cape Campbell, New Zealand
A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand.

On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw  brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986.

John W. Young in the shuttle commander’s seat prior to entry and landing Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission
Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission.

Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston
Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston.

The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display.

The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia
The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.

Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office.

Share

Details

Last Updated
Nov 28, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Rocket Lab USA Inc. of Long Beach, California, to launch the agency’s Aspera mission, a SmallSat to study galaxy formation and evolution, providing new insights into how the universe works.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity launch service task order awards during VADR’s five-year ordering period, with a maximum total contract value of $300 million.
      Through the observation of ultraviolet light, Aspera will examine hot gas in the space between galaxies, called the intergalactic medium. The mission will study the inflow and outflow of gas from galaxies, a process thought to contribute to star formation.
      Aspera is part of NASA’s Pioneers Program in the Astrophysics Division at NASA Headquarters in Washington, which funds compelling astrophysics science at a lower cost using small hardware and modest payloads. The principal investigator for Aspera is Carlos Vargas at the University of Arizona in Tucson. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
      To learn more about NASA’s Aspera mission and the Pioneers Program, visit:
      https://go.nasa.gov/42U1Wkn
      -end-
      Joshua Finch / Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      joshua.a.finch@nasa.gov / tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Space Operations Mission Directorate Kennedy Space Center Launch Services Office Launch Services Program NASA Headquarters View the full article
    • By NASA
      The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.
      Briefing participants include:
      Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space Sarah Walker, director, Dragon mission management, SpaceX Sergio Palumberi, mission manager, ESA (European Space Agency) Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency) Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit) To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:
      https://bit.ly/437SAAh
      The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.
      During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
      The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Alexis DeJarnette
      Axiom Space, Houston
      alexis@axiomspace.com
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      6 min read
      NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.
      The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI “This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.
      Picking the right aurora
      On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.
      Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.
      While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.
      Coordinating the picture-perfect moment
      Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.
      “The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.
      That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.
      At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.
      “This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.
      “When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”
      A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.
      “This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).
      The future of aurora on Mars
      By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.
      “Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”
      On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

      By Willow Reed
      Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder
      Media Contact: 
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share








      Details
      Last Updated May 14, 2025 Related Terms
      Mars Goddard Space Flight Center MAVEN (Mars Atmosphere and Volatile EvolutioN) View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Aine Corona.NASA/JPL-Caltech Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.
      Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
      Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
      Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
      “Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
      This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
      Mystery Coronae
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
      “Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
      The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
      One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
      These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
      Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
      Deciphering Venus
      This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
      While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
      Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
      For more information about NASA’s VERITAS mission, visit:
      https://science.nasa.gov/mission/veritas/
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-068
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Magellan Jet Propulsion Laboratory Planetary Science Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) Explore More
      6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise
      New details about the crust on Venus include some surprises about the geology of Earth’s…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...