Jump to content

40 Years Ago: STS-9, the First Spacelab Science Mission


Recommended Posts

  • Publishers
Posted

On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines.

The STS-9 crew patch Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency The payload patch for Spacelab 1
Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1.

In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions.

Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay
Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay.

The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983.

In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs
Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs.

Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8.

The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas
Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas.

-Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module
Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module.

Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses
Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses.

On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston.

View of the Spacelab module in the shuttle’s payload bay Several STS-9 crew members struggle to open the hatch to the transfer tunnel Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module
Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module.

Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place.

sts-9-18-inside-spacelab-s09-15-755.jpg Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments Garriott, front, and Lichtenberg at work in the Spacelab module
Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module.

The rotating dome experiment to study visual vestibular interactions Owen K. Garriott prepares to place blood samples in a passive freezer Inflight photograph of the STS-9 crew
Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew.

The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right STS-9 crew Earth observation photograph Hong Kong STS-9 crew Earth observation photograph of Cape Campbell, New Zealand
A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand.

On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw  brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986.

John W. Young in the shuttle commander’s seat prior to entry and landing Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission
Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission.

Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston
Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston.

The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display.

The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia
The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.

Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office.

Share

Details

Last Updated
Nov 28, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      NASA software engineer Brandon Carver updates how the main data acquisition software processes information at NASA’s Stennis Space Center, where he has contributed to the creation of the center’s first-ever open-source software.NASA/Danny Nowlin Syncom Space Services software engineer Shane Cravens, the chief architect behind the first-ever open-source software at NASA’s Stennis Space Center, verifies operation of the site’s data acquisition hardware.NASA/Danny Nowlin NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has released its first-ever open-source software, a peer review tool to facilitate more efficient and collaborative creation of systems applications, such as those used in its frontline government and commercial propulsion test work.
      “Everyone knows NASA Stennis as the nation’s premier rocket propulsion test site,” said David Carver, acting chief of the Office of Test Data and Information Management. “We also are engaged in a range of key technology efforts. This latest open-source tool is an exciting example of that work, and one we anticipate will have a positive and widespread impact.”
      The new NASA Data Acquisition System Peer Review Tool was developed over several years, built on lessons learned as site developers and engineers created software tools for use across the center’s sprawling test complex. It is designed to simplify and amplify the collaborative review process, allowing developers to build better and more effective software applications.
      The new NASA Stennis Peer Review tool was developed using the same software processes that built NDAS. As center engineers and developers created software to monitor and analyze data from rocket propulsion tests, they collaborated with peers to optimize system efficiency. What began as an internal review process ultimately evolved into the open-source code now available to the public.
      “We refined it (the peer review tool) over a period of time, and it has improved our process significantly,” said Brandon Carver (no relation), a NASA Stennis software engineer. “In early efforts, we were doing reviews manually, now our tool handles some of these steps for us. It has allowed us to focus more on reviewing key items in our software.”
      Developers can improve time, efficiency, and address issues earlier when conducting software code reviews. The result is a better, more productive product.
      The NASA Stennis tool is part of the larger NASA Data Acquisition System created at the center to help monitor and collect propulsion test data. It is designed to work with National Instruments LabVIEW, which is widely used by systems engineers and scientists to design applications. LabVIEW is unique in using graphics (visible icon objects) instead of a text-based programming language to create applications. The graphical approach makes it more challenging to compare codes in a review process.
      “You cannot compare your code in the same way you do with a text-based language,” Brandon Carver said. “Our tool offers a process that allows developers to review these LabVIEW-developed programs and to focus more time on reviewing actual code updates.”
      LabVIEW features a comparison tool, but NASA Stennis engineers identified ways they could improve the process, including by automating certain steps. The NASA Stennis tool makes it easier to post comments, pictures, and other elements in an online peer review to make discussions more effective.  
      The result is what NASA Stennis developers hope is a more streamlined, efficient process. “It really optimizes your time and provides everything you need to focus on right in front of you,” Brandon Carver said. “That’s why we wanted to open source this because when we were building the tool, we did not see anything like it, or we did not see anything that had features that we have.”
      “By providing it to the open-source community, they can take our tool, find better ways of handling things, and refine it,” Brandon Carver said. “We want to allow those groups to modify it and become a community around the tool, so it is continuously improved. Ultimately, a peer review is to make stronger software or a stronger product and that is also true for this peer review tool.
      “It is a good feeling to be part of the process and to see something created at the center now out in the larger world across the agency,” Brandon Carver said. “It is pretty exciting to be able to say that you can go get this software we have written and used,” he acknowledged. “NASA engineers have done this. I hope we continue to do it.”
      To access the peer review tool developed at NASA Stennis, visit NASA GitHub.
      Read More Share
      Details
      Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      8 Min Read How to Contribute to Citizen Science with NASA
      A number of NASA projects use mobile phone apps to put satellite data into the palm of your hand, and allow intrepid citizen scientists to upload data. Credits:
      NASA A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen scientist and contribute to projects about Earth, the solar system, and beyond.
      Science is built from small grains of sand, and you can contribute yours from any corner of the world.
      All you need is a cell phone or a computer with an internet connection to begin a scientific adventure. Can you imagine making a pioneering discovery in the cosmos? Want to help solve problems that could improve life on our planet? Or maybe you dream of helping solve an ancient mystery of the universe? All of this is possible through NASA’s Citizen Science program.
      NASA defines citizen science, or participatory science, as “science projects that rely on volunteers,” said Dr. Marc Kuchner, an astrophysicist and the Citizen Science Officer in the agency’s Science Mission Directorate in Washington, D.C.
      For decades, volunteers have been supporting NASA researchers in different fields and in a variety of ways, depending on the project. They help by taking measurements, sorting data from NASA missions, and deepening our understanding of the universe and our home planet. It all counts.
      “That’s science for you: It’s collaborative,” said Kuchner, who oversees the more than 30 citizen science projects NASA offers. “I connect the public and scientists to get more NASA science done.”
      NASA astrophysicist Marc Kuchner is a pioneer in participatory science and today serves as NASA’s Citizen Science program officer. In 2014, Kuchner created the Disk Detective project, which helps NASA scientists study how planets form. Kuchner has also been the principal investigator for some of the agency’s many citizen science projects, but today he oversees the portfolio and promotes volunteer participation around the world.
      Credit: David Friedlander A menu of projects for all tastes
      Citizen scientists can come from anywhere in the world—they do not have to be U.S. citizens or residents. Volunteers help NASA look for planets in other solar systems, called exoplanets; sort clouds in Earth’s sky; observe solar eclipses; or detect comets and asteroids. Some of those space rocks are even named after the volunteers who helped find them.
      Mass participation is key in initiatives that require as many human eyes as possible. “There are science projects that you can’t do without the help of a big team,” Kuchner said. For example, projects that need large datasets from space telescopes—or “things that are physically big and you need people in different places looking from different angles,” he said.
      One example is Aurorasaurus, which invites people to observe and classify northern and southern auroras. “We try to study them with satellites, but it really helps to have people on the ground taking photos from different places at different times,” he explained.
      “Part of the way we serve our country and humankind is by sharing not just the pretty pictures from our satellites, but the entire experience of doing science,” Kuchner said.
      More than 3 million people have participated in the program. Kuchner believes that shows how much people want to be part of what he calls the “roller coaster” of science. “They want to go on that adventure with us, and we are thrilled to have them.”
      The dream of discovering
      “You can help scientists who are now at NASA and other organizations around the world to discover interesting things,” said Faber Burgos, a citizen scientist and science communicator from Colombia. “Truth be told, I’ve always dreamed of making history.”
      Colombian citizen scientist Faber Burgos studied Modern Languages at the Colombian School of Industrial Careers and has a university degree in Classical Archaeology. Today, he is dedicated to disseminating science content through his social media accounts, focusing on children. In 2020, he and his team launched a balloon probe into the stratosphere with a camera that captured the curvature of the Earth, with the aim of demonstrating that the Earth is round. The video of that feat exceeds 97 million views on his Facebook account, earning him a Guinness World Record.
      Credit: Courtesy of Faber Burgos Burgos has been involved in two projects for the past four years: the International Astronomical Search Collaboration (IASC), which searches the sky for potentially dangerous asteroids, and Backyard Worlds: Planet 9. This project uses data from NASA’s now-completed Wide-field Infrared Survey Explorer (WISE) and its follow-up mission, NEOWISE, to search for brown dwarfs and a hypothetical ninth planet.
      “There are really amazing participants in this project,” said Kuchner, who helped launch it in 2015. NASA’s WISE and NEOWISE missions detected about 2 billion sources in the sky. “So, the question is: Among those many sources, are any of them new unknowns?” he said.
      The project has already found more than 4,000 brown dwarfs. These are Jupiter-sized objects—balls of gas that are too big to be planets, but too small to be stars. Volunteers have even helped discover a new type of brown dwarf.
      Participants in the project are also hopeful they’ll find a hypothetical ninth planet, possibly Neptune-sized, in an orbit far beyond Pluto.
      The Backyard Worlds: Planet 9 citizen science project asks volunteers to help search for new objects at the edge of our solar system. The assignment is to review images from NASA’s past WISE and NEOWISE missions in search of two types of astronomical objects: brown dwarfs(balls of gas the same size as  Jupiter that have too little mass to be considered stars) and low-mass stars. Or, even, the hypothetical ninth planet of our Sun, known as Planet nine, or Planet X. The image shows an artist’s rendering of such a hypothetical world orbiting far from the Sun.
      Credit: Caltech/R. Hurt (IPAC) Caltech/R. Hurt (IPAC) Burgos explained that analyzing the images is easy. “If it’s a moving object, it’s obviously going to be something of interest,” he said. “Usually, when you see these images, everything is still. But if there’s an object moving, you have to keep an eye on it.”
      Once a citizen scientist marks the object across the full image sequence, they send the information to NASA scientists to evaluate.
      “As a citizen scientist, I’m happy to do my bit and, hopefully, one day discover something very interesting,” he said. “That’s the beauty of NASA—it invites everyone to be a scientist. Here, it doesn’t matter what you are, but your desire to learn.”
      The first step
      To become a NASA citizen scientist, start by visiting the program’s website. There you’ll find a complete list of available projects with links to their respective sites. Some are available in Spanish and other languages. Many projects are also hosted on the Zooniverse platform, which has been available since 2006.
      “Another cool way to get involved is to come to one of our live events,” said Kuchner. These are virtual events open to the public, where NASA scientists present their projects and invite people to participate. “Pick a project you like—and if it’s not fun, pick a different one,” he advised. “There are wonderful relationships to be had if you reach out to scientists and other participants.”
      Another way for people to get involved in citizen science is to participate in the annual NASA International Space Apps Challenge, the largest global hackathon. This two-day event creates innovation through international collaboration, providing an opportunity for participants to use NASA’s free and open data and agency partners’ space-based data to tackle real-world problems on Earth and in space. The next NASA International Space Apps Challenge will be October 4-5, 2025.
      Credit: NASA Age is not the limit
      People of all ages can be citizen scientists. Some projects are kid-friendly, such as Nemo-Net, an iPad game that invites participants to color coral reefs to help sort them. “I’d like to encourage young people to start there—or try a project with one of the older people in their life,” Kuchner said.
      Citizen science can also take place in classrooms. In the Growing Beyond Earth project, teachers and students run experiments on how to grow plants in space for future missions. The IASC project also works with high schools to help students detect asteroids.
      A student waters small plants inside a Growing Beyond Earth citizen science project grow box.
      Credit: NASA Projects by the community, for the community
      GLOBE Observer is another initiative with an international network of teachers and students. The platform offers a range of projects—many in Spanish—that invite people to collect data using their cell phones.
      One of the most popular is the GLOBE Mosquito Habitat Mapper, which tracks the migration and spread of mosquitoes that carry diseases. “It’s a way to help save lives—tracking the vectors that transmit malaria and Zika, among others,” Kuchner said.
      Other GLOBE projects explore everything from ground cover to cloud types. Some use astronomical phenomena visible to everyone. For example, during the 2024 total solar eclipse, participants measured air temperature using their phones and shared that data with NASA scientists.
      The full experience of doing science
      No prior studies are needed, but many volunteers go on to collaborate on—or even lead—scientific research. More than 500 NASA citizen scientists have co-authored scientific publications.
      One of them is Hugo Durantini Luca, from Córdoba, Argentina, who has participated in 17 published articles, with more on the way. For years, he explored various science projects, looking for one where he could contribute more actively.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA He participated in NASA’s first citizen science project, Stardust@home, which invites users to search for interstellar dust particles in collectors from the Stardust mission, using a virtual microscope.
      In 2014, he discovered Disk Detective, a project that searches for disks around stars, where planets may form. By looking at images from the WISE and NEOWISE missions, participants can help understand how worlds are born and how solar systems evolve.
      “And, incidentally, if we find planets or some sign of life, all the better,” said Durantini Luca.
      Although that remains a dream, they have made other discoveries—like a new kind of stellar disk called the “Peter Pan Disk,” which appears young even though the star it surrounds is not.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA Science in person
      In 2016, Durantini Luca got the chance to support Disk Detective with his own observations from the southern hemisphere. He traveled to El Leoncito Astronomical Complex (CASLEO), an observatory in San Juan, Argentina. There, he learned to use a spectrograph—an instrument that breaks down starlight to analyze its composition.
      He treasures that experience. “Curiously, it was the first time in my life I used a telescope,” he said.
      In 2016, citizen scientist Hugo Durantini Luca traveled for 18 hours to the El Leoncito Astronomical Complex (CASLEO), at the foot of the Andes Mountains. From there, he made observations of a candidate star of the Disk Detective project.
      Credit: Luciano García While in-person opportunities are rare, both virtual and physical events help build community. Citizen scientists stay in touch weekly through various channels.
      “Several of us are friends already—after so many years of bad jokes on calls,” said Durantini Luca.
      “People send me pictures of how they met,” said Kuchner. He said the program has even changed how he does science. “It’s changed my life,” he said. “Science is already cool—and this makes it even cooler.”
      About the Author
      NASA Science Editorial Team

      Share








      Details
      Last Updated Apr 29, 2025 Related Terms
      Citizen Science Earth Science Get Involved The Solar System The Universe Explore More
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      8 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      9 hours ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      What does the future of space exploration look like? At the 2025 FIRST Robotics World Championship in Houston, NASA gave student robotics teams and industry leaders a first-hand look—complete with lunar rovers, robotic arms, and real conversations about shaping the next era of discovery. 
      Students and mentors experience NASA exhibits at the 2025 FIRST Robotics World Championship at the George R. Brown Convention Center in Houston from April 16-18. NASA/Sumer Loggins NASA engaged directly with the Artemis Generation, connecting with more than 55,000 students and 75,000 parents and mentors. Through interactive exhibits and discussions, students explored the agency’s robotic technologies, learned about STEM career paths and internships, and gained insight into NASA’s bold vision for the future. Many expressed interest in internships—and dreams of one day contributing to NASA’s missions to explore the unknown for the benefit of all humanity. 
      Multiple NASA centers participated in the event, including Johnson Space Center in Houston; Jet Propulsion Laboratory in Southern California; Kennedy Space Center in Florida; Langley Research Center in Virginia; Ames Research Center in California; Michoud Assembly Facility in New Orleans; Armstrong Flight Research Center in Edwards, California; Glenn Research Center in Cleveland; Goddard Space Flight Center in Greenbelt, Maryland; and the Katherine Johnson Independent Verification and Validation Facility in West Virginia. Each brought unique technologies and expertise to the exhibit floor. 
      FIRST Robotics attendees explore NASA’s exhibit and learn about the agency’s mission during the event.NASA/Robert Markowitz Displays highlighted key innovations such as: 
      Automated Reconfigurable Mission Adaptive Digital Assembly Systems: A modular system of small robots and smart algorithms that can autonomously assemble large-scale structures in space.  Cooperative Autonomous Distributed Robotic Exploration: A team of small lunar rovers designed to operate independently, navigating and making decisions together without human input.  Lightweight Surface Manipulation System AutoNomy Capabilities Development for Surface Operations and Construction: A robotic arm system built for lunar construction tasks, developed through NASA’s Early Career Initiative.  Space Exploration Vehicle: A pressurized rover prototype built for human exploration of planetary surfaces, offering attendees a look at how future astronauts may one day travel across the Moon or Mars.  Mars Perseverance Rover: An exhibit detailing the rover’s mission to search for ancient microbial life and collect samples for future return to Earth.  In-Situ Resource Utilization Pilot Excavator: A lunar bulldozer-dump truck hybrid designed to mine and transport regolith, supporting long-term exploration through the Artemis campaign.  Visitors view NASA’s Space Exploration Vehicle on display.NASA/Robert Markowitz “These demonstrations help students see themselves in NASA’s mission and the next frontier of lunar exploration,” said Johnson Public Affairs Specialist Andrew Knotts. “They can picture their future as part of the team shaping how we live and work in space.” 
      Since the FIRST Championship relocated to Houston in 2017, NASA has mentored more than 250 robotics teams annually, supporting elementary through high school students. The agency continued that tradition for this year’s event, and celebrated the fusion of science, engineering, and creativity that defines both robotics and space exploration. 
      NASA’s booth draws crowds at FIRST Robotics 2025 with hands-on exhibits. NASA/Robert Markowitz Local students also had the chance to learn about the Texas High School Aerospace Scholars program, which offers Texas high school juniors hands-on experience designing space missions and solving engineering challenges—an early gateway into NASA’s world of exploration. 
      As the competition came to a close, students and mentors were already looking ahead to the next season—energized by new ideas, strengthened friendships, and dreams of future missions. 
      NASA volunteers at the FIRST Robotics World Championship on April 17, 2025. NASA/Robert Markowitz “It was a true privilege to represent NASA to so many inspiring students, educators, and mentors,” said Jeanette Snyder, aerospace systems engineer for Gateway. “Not too long ago, I was a robotics student myself, and I still use skills I developed through FIRST Robotics in my work as a NASA engineer. Seeing so much excitement around engineering and technology makes me optimistic for the future of space exploration. I can’t wait to see these students become the next generation of NASA engineers and world changers.” 
      With the enthusiastic support of volunteers, mentors, sponsors, and industry leaders, and NASA’s continued commitment to STEM outreach, the future of exploration is in bold, capable hands. 
      See the full event come to life in the panorama videos below.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      View the full article
  • Check out these Videos

×
×
  • Create New...