Jump to content

40 Years Ago: STS-9, the First Spacelab Science Mission


Recommended Posts

  • Publishers
Posted

On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines.

The STS-9 crew patch Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency The payload patch for Spacelab 1
Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1.

In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions.

Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay
Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay.

The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983.

In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs
Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs.

Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8.

The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas
Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas.

-Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module
Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module.

Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses
Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses.

On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston.

View of the Spacelab module in the shuttle’s payload bay Several STS-9 crew members struggle to open the hatch to the transfer tunnel Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module
Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module.

Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place.

sts-9-18-inside-spacelab-s09-15-755.jpg Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments Garriott, front, and Lichtenberg at work in the Spacelab module
Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module.

The rotating dome experiment to study visual vestibular interactions Owen K. Garriott prepares to place blood samples in a passive freezer Inflight photograph of the STS-9 crew
Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew.

The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right STS-9 crew Earth observation photograph Hong Kong STS-9 crew Earth observation photograph of Cape Campbell, New Zealand
A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand.

On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw  brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986.

John W. Young in the shuttle commander’s seat prior to entry and landing Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission
Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission.

Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston
Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston.

The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display.

The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia
The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.

Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office.

Share

Details

Last Updated
Nov 28, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:01:43 An essential part of ESA’s Space Safety programme is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a true circular economy in space, minimising the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030.  
      ESA has now taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE, planned for launch in 2029. 
      RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite, extending the life of geostationary satellites that need support with attitude and orbit control, but are otherwise in working order.  
      After verifying that it meets all the performance standards in a first demonstration, prime contractor, operator and co-founder D-Orbit will start commercial life extension services for geostationary satellites. 
      ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refuelling, refurbishment and assembling – all essential elements for creating a circular economy in space.   
      Watch with subtitles
      View the full article
    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
  • Check out these Videos

×
×
  • Create New...