Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Breathing Beyond Earth concept.NASA/Alvaro Romero-Calvo Alvaro Romero-Calvo
      Georgia Tech Research Corporation
      The reliable and efficient operation of spacecraft life support systems is challenged in microgravity by the near absence of buoyancy. This impacts the electrolytic production of oxygen and hydrogen from water by forcing the adoption of complex multiphase flow management technologies. Still, water splitting plays an essential role in human spaceflight, closing the regenerative environmental control and life support loop and connecting the water and atmosphere management subsystems. Existing oxygen generation systems, although successful for short-term crewed missions, lack the reliability and efficiency required for long-duration spaceflight and, in particular, for Mars exploration.
      During our Phase I NIAC effort, we demonstrated the basic feasibility of a novel water-splitting architecture that leverages contactless magnetohydrodynamic (MHD) forces to produce and separate oxygen and hydrogen gas bubbles in microgravity. The system, known as the Magnetohydrodynamic Oxygen Generation Assembly (MOGA), avoids the use of forced water recirculation loops or moving parts such as pumps or centrifuges for phase separation. This fundamental paradigm shift results in multiple operational advantages with respect to the state-of-the-art: increased robustness to over- and under-voltages in the cell stack, minimal risk of electrolyte leaching, wider operational temperature and humidity levels, simpler transient operation, increased material durability, enhanced system stability during dormant periods, modest water purity requirements, reduced microbial growth, and better component-level swap-ability, all of which result in an exceptionally robust system. Overall, these architectural features lead to a 32.9% mass reduction and 20.4% astronaut maintenance time savings with respect to the Oxygen Generation Assembly at the ISS for a four-crew Mars transfer, making the system ideally suited for long-duration missions. In Phase II, we seek to answer some of the key remaining unknowns surrounding this architecture, particularly regarding (i) the long-term electrochemical and multiphase flow behavior of the system in microgravity and its impact on power consumption and liquid interface stability, (ii) the transient operational modes of the MHD drive during start-up, shutdown, and dormancy, and (iii) architectural improvements for manufacturability and ease of repair. Toward that end, we will leverage our combined expertise in microgravity research by partnering with the ZARM Institute in Bremen and the German Aerospace Center to fly, free of charge to NASA, a large-scale magnetohydrodynamic drive system and demonstrate critical processes and components. An external review board composed of industry experts will assess the evolution of the project and inform commercial infusion. This effort will result in a TRL-4 system that will also benefit additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion and in-situ resource utilization.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame

      A robot for space and the workplace

      Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact. 

      Some of the toughest electronic chips on and off Earth

      Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles. 
      From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.

      Hydrogen sensors that could go the distance on other worlds

      Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
      With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there. 

      Advanced materials research to make travel safer

      Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.  
      Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.

      Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
      Read More Share
      Details
      Last Updated May 09, 2025 Related Terms
      Technology Technology Transfer Technology Transfer & Spinoffs Explore More
      3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
      Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
      NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
      “This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
      During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
      In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
      Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
      “Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
      Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
      Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
      “We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
      NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris When curiosity takes flight, learning knows no bounds. The impact of supporting STEM education extends far beyond the classroom, shaping the future of innovation and exploration. NASA Engages is the agency’s outreach website that connects NASA experts and resources with communities, educators, and students across the country. Led by NASA’s Office of STEM Engagement, the platform fosters collaboration between educators, organizations, and NASA employees to inspire the next generation.
      Giovanna Camacho, Pathways systems engineering intern from NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Bringing NASA to the Classroom
      NASA employees dedicate their time and expertise through NASA Engages, whether they’re passionate about robotics, flight research, or inspiring young minds to pursue STEM careers. One example of this is Aero Fair, a STEM program led by the California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. This initiative brings aeronautics directly to students, with NASA Armstrong professionals visiting classrooms – both in person and virtually – to engage students during three-day experiences that allow them to learn about aeronautics, meet NASA professionals, and explore potential career paths they might not have previously considered.
      “When volunteers step up to help inspire and facilitate learning in the classroom, they are benefiting not only the students they interact with, but our future generation as well,” says Giovanna Camacho, Pathways systems engineering intern at NASA Armstrong, who volunteered at the event.
      Chloe Day, a student at Tropico Middle School in Rosamond, California, said Aero Fair inspired her to consider a STEM career. “When NASA employees were talking about what they do and how they help our world today, it made me feel like I want to do it too.”
      Educators can request an Aero Fair experience through NASA’s STEM Gateway. These programs “give students a chance to see themselves as real problem-solvers and innovators,” said Shauna Tinich, a Tropico Middle School teacher. “The most beneficial part of Aero Fair is the real-world connection to STEM. The connection to NASA makes it real and exciting for the students.”
      Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A Program for Impact
      The NASA Engages website matches outreach opportunities to employee skills and interests, while educators and community organizations can use the website to request public speakers, classroom visits, and educational support at events.
      For many volunteers, the experience is just as inspiring as it is for the students. “Every time I volunteer, I walk out inspired,” Camacho said. “It motivates me to continue my pursuit of making a difference.”
      Gary Laier, center liaison for the Small Business Innovation Research and Small Business Technology Transfer programs at NASA Armstrong, and Aero Fair volunteer, agreed: “It’s a rewarding experience for students, teachers, and NASA volunteers alike. I enjoy the opportunity to inspire youth and get them excited about their futures.”
      By participating in outreach activities like Aero Fair, career panels, or events, NASA employees not only help ignite curiosity and provide knowledge to students and the community but also strengthen NASA’s connection to the communities it serves.
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Explore NASA STEM Opportunities
      Educators, organizations, and community groups can connect with NASA in two ways. Through NASA Engages, external groups can request NASA support for their own events – such as inviting a NASA speaker or arranging classroom visits and providing outreach materials. Meanwhile, NASA STEM Gateway provides opportunities for individuals to participate in NASA-developed STEM events, internships, and programs like Aero Fair. To request NASA participation in an event or to learn more about NASA STEM opportunities, visit https://stemgateway.nasa.gov/nasaengages/s/.
      Giovanna Camacho, Pathways systems engineering intern at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Share
      Details
      Last Updated Apr 30, 2025 Related Terms
      Armstrong Flight Research Center Learning Resources NASA STEM Projects STEM Engagement at NASA Explore More
      7 min read ¿Qué es una caminata espacial? (Grados 5.o a 8.o)
      Article 4 hours ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025 
      Article 1 day ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Science Science Activation Building for a Better World:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   6 min read
      Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t just learning how to measure and cut wood—they’re discovering how their skills can serve a greater purpose.
      When the NASA Science Activation program’s NASA eClips project—led by the National Institute of Aerospace’s Center for Integrative Science, Technology, Engineering, and Mathematics (STEM) Education (NIA-CISE)—needed help building weather instrument shelters for local schools, Norfolk Public Schools’ Career and Technical Education (CTE) team saw an opportunity to connect students to something bigger than the classroom. The shelters are used to house scientific equipment that K–12 students rely on to collect data using GLOBE (Global Learning and Observations to Benefit the Environment) protocols—a set of standardized, internationally recognized methods for gathering environmental data such as temperature, soil moisture, and cloud cover. These observations contribute to a global citizen science database, giving young learners a meaningful role in real-world environmental research.
      Originally, shelters were being ordered from a national supplier to support GLOBE training sessions for teachers in GO (Growth & Opportunity) Virginia Region 5, an economic development region. These training sessions were funded through a generous grant from the Coastal Virginia STEM Hub (COVA STEM Hub), which supports regional collaboration in STEM education. But when the supplier couldn’t keep up with demand, Norfolk Public Schools CTE Specialist Dr. Deborah Marshall offered a bold solution: why not have local students build them?
      That’s when the project truly took off. Under the guidance of Jordan Crawford, students took on the challenge of building 20 high-quality shelters in spring 2024, following precise construction plans provided through the GLOBE Program. Materials were funded by the COVA STEM grant, and the students rolled up their sleeves to turn lumber into lasting educational tools for their community.
      “As an instructor, you look for opportunities that challenge your students, allow them to do things bigger than themselves, and let them see a project through from start to finish,” Crawford said. “This project allowed my students to hone existing skills and build new ones, and I saw incredible growth not just in craftsmanship but in teamwork. The most rewarding part was seeing the impact of their work in real schools.”
      And the students rose to the occasion—taking pride in their work, learning advanced techniques, and developing new confidence. One of the most challenging parts of the build involved crafting the louvers—angled slats on the sides of the shelters needed for proper air circulation. Student Zymere Watts took the lead in designing and building a jig to make sure the louvers could be cut uniformly and precisely for every unit.
      “Building the weather shelters was a fun and challenging task that pushed me to strive for perfection with each one,” said student Amir Moore. “After completion, I was delighted to see the faces of the people who were proud and happy with what we built.”
      “It was an extreme pleasure working on this project. I would love to work with NIA again,” added LaValle Howard. “I am proud to be a part of this vocational school and team.”
      Jaymyson Burden agreed: “It was fun and great to be exposed to the carpentry realm and install them in the real world. It was gratifying to know what we have done has an impact.”
      After completing the shelters, the students volunteered to install them at seven Hampton City Schools. Their work completed the full circle—from building the shelters in their carpentry classroom to setting them up where younger students would use them to collect real environmental data.
      Their dedication did not go unnoticed. The team was invited to NASA’s Langley Research Center for a behind-the-scenes tour of the NASA Model Shop, where they met Sam James, a Mechanical Engineering Technician and Fabrication Specialist. James showed the students how the same kind of craftsmanship they’d used is essential in the creation of tools and components for NASA missions. They also learned about NASA summer internships and discovered that their hands-on skills could open doors to exciting careers in STEM fields.
      “It was an honor to help where we were needed,” said student Josh Hunsucker. “Assembling these gave us a new perspective on the importance of duplication and how each step impacts the result. We’re happy to help wherever or whenever we’re needed—it provides a learning experience for us.”
      Kyra Pope summed it up: “It’s been a great amount of work over the past few months, but it pays off—especially when you’re giving back to the community.”
      According to Dr. Sharon Bowers, Associate Director and Senior STEM Education Specialist for NIA-CISE, the project demonstrates what’s possible when regional partners come together to empower students and educators alike. “The financial support from COVA STEM Hub supported sustained educator professional learning within our STEM learning ecosystem. Work with the Norfolk Technical Center truly made this a real-world, problem-solving experience. This is just the beginning for more collaborative work that will bring the region together to engage educators and learners in authentic STEM learning experiences.”
      This collaboration wasn’t just about building boxes to house thermometers. It was about building bridges—between technical education and science, between high school students and their futures, and between local classrooms and global research. With each shelter they crafted, the students created something that will outlast them, reminding others—and themselves—of what’s possible when learning is hands-on, meaningful, and connected to the world beyond school walls.
      Thanks to Betsy McAllister, NIA’s Educator-in-Residence from Hampton City Schools, for her impactful contributions and for sharing this story. The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Carpentry students from the Norfolk Technical Center install a digital, multi-day, minimum/maximum thermometer in the GLOBE instrument shelter. Share








      Details
      Last Updated Apr 17, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Science Activation Opportunities For Students to Get Involved Partner with NASA STEM Explore More
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      3 days ago
      4 min read GLOBE Mission Earth Supports Career Technical Education


      Article


      6 days ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...