Jump to content

NASA’s Webb Reveals New Features in Heart of Milky Way


Recommended Posts

  • Publishers
Posted
4 Min Read

NASA’s Webb Reveals New Features in Heart of Milky Way

A crowded region of space, full of stars and colorful clouds, more than twice as wide as it is tall. A funnel-shaped region of space appears darker than its surroundings with fewer stars. It is wider at the top edge of the image, narrowing towards the bottom. Toward the narrow end of this dark region a small clump of red and white appears to shoot out streamers upward and left. A large, bright cyan-colored area surrounds the lower portion of the funnel-shaped dark area, forming a rough U shape. The cyan-colored area has needle-like, linear structures and becomes more diffuse in the center of the image. The right side of the image is dominated by clouds of orange and red, with a purple haze.
Sagitarius C (NIRCam)
Credits: NASA, ESA, CSA, STScI, and S. Crowe (University of Virginia).

The latest image from NASA’s James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*.

Image: Sagitarius C (NIRCam)

A crowded region of space, full of stars and colorful clouds, more than twice as wide as it is tall. A funnel-shaped region of space appears darker than its surroundings with fewer stars. It is wider at the top edge of the image, narrowing towards the bottom. Toward the narrow end of this dark region a small clump of red and white appears to shoot out streamers upward and left. A large, bright cyan-colored area surrounds the lower portion of the funnel-shaped dark area, forming a rough U shape. The cyan-colored area has needle-like, linear structures and becomes more diffuse in the center of the image. The right side of the image is dominated by clouds of orange and red, with a purple haze.
The NIRCam (Near-Infrared Camera) instrument on NASA’s James Webb Space Telescope’s reveals a portion of the Milky Way’s dense core in a new light. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A large region of ionized hydrogen, shown in cyan, contains intriguing needle-like structures that lack any uniform orientation.
NASA, ESA, CSA, STScI, and S. Crowe (University of Virginia).

“There’s never been any infrared data on this region with the level of resolution and sensitivity we get with Webb, so we are seeing lots of features here for the first time,” said the observation team’s principal investigator Samuel Crowe, an undergraduate student at the University of Virginia in Charlottesville. “Webb reveals an incredible amount of detail, allowing us to study star formation in this sort of environment in a way that wasn’t possible previously.”

“The galactic center is the most extreme environment in our Milky Way galaxy, where current theories of star formation can be put to their most rigorous test,” added professor Jonathan Tan, one of Crowe’s advisors at the University of Virginia.

Protostars

Amid the estimated 500,000 stars in the image is a cluster of protostars – stars that are still forming and gaining mass – producing outflows that glow like a bonfire in the midst of an infrared-dark cloud. At the heart of this young cluster is a previously known, massive protostar over 30 times the mass of our Sun. The cloud the protostars are emerging from is so dense that the light from stars behind it cannot reach Webb, making it appear less crowded when in fact it is one of the most densely packed areas of the image. Smaller infrared-dark clouds dot the image, looking like holes in the starfield. That’s where future stars are forming.

Webb’s NIRCam (Near-Infrared Camera) instrument also captured large-scale emission from ionized hydrogen surrounding the lower side of the dark cloud, shown cyan-colored in the image. Typically, Crowe says, this is the result of energetic photons being emitted by young massive stars, but the vast extent of the region shown by Webb is something of a surprise that bears further investigation. Another feature of the region that Crowe plans to examine further is the needle-like structures in the ionized hydrogen, which appear oriented chaotically in many directions.

“The galactic center is a crowded, tumultuous place. There are turbulent, magnetized gas clouds that are forming stars, which then impact the surrounding gas with their outflowing winds, jets, and radiation,” said Rubén Fedriani, a co-investigator of the project at the Instituto Astrofísica de Andalucía in Spain. “Webb has provided us with a ton of data on this extreme environment, and we are just starting to dig into it.”

Image: Sagitarius C Features

A crowded region of space, full of stars and colorful clouds, more than twice as wide as it is tall, with features outlined in the image in different colors. A key on the right indicates what each outline is highlighting. From the top of the key down: an orange circle next to text, protostar cluster. An irregular green dashed-line shape with text, infrared-dark cloud. A straight red dashed-line with text, needle structures. An irregular yellow dotted-line shape with text, ionized hydrogen. See extended description for more details on the image.
Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center.
NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

Around 25,000 light-years from Earth, the galactic center is close enough to study individual stars with the Webb telescope, allowing astronomers to gather unprecedented information on how stars form, and how this process may depend on the cosmic environment, especially compared to other regions of the galaxy. For example, are more massive stars formed in the center of the Milky Way, as opposed to the edges of its spiral arms?

“The image from Webb is stunning, and the science we will get from it is even better,” Crowe said. “Massive stars are factories that produce heavy elements in their nuclear cores, so understanding them better is like learning the origin story of much of the universe.”

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Leah Ramsay lramsay@stsci.edu , Christine Pulliam cpulliam@stsci.edu

Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Related Information

Star Formation

Piercing the Dark Birthplaces of Massive Stars with Webb

Our Milky Way

Webb Mission – https://science.nasa.gov/mission/webb/

Webb News – https://science.nasa.gov/mission/webb/latestnews/

Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Related For Kids

What Is a Nebula?

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronauts Anne McClain (bottom) and Nichole Ayers (top), both Expedition 73 Flight Engineers, checkout spacesuit hardware in the Quest airlock and review procedures for a May 1 spacewalk. Credit: NASA Johnson Space Center NASA astronauts Nichole Ayers and Anne McClain will answer prerecorded questions about science, technology, engineering, and mathematics from students in Bethpage, New York. The two astronauts are currently aboard the International Space Station.
      Watch the 20-minute Earth-to-space call at 12:45 p.m. EDT on Friday, May 16, on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Tuesday, May 13, by contacting Francesca Russell at: frussell@syntaxny.com or 516-644-4330.
      The event is hosted by Central Boulevard Elementary School. As part of the call, students will highlight their year-long reading program, “Reading is a Blast-Exploring a Universe of Stories.”
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated May 09, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters International Space Station (ISS) Johnson Space Center View the full article
    • By NASA
      3 min read
      NASA Study Reveals Venus Crust Surprise
      This global view of the surface of Venus is centered at 180 degrees east longitude. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer Venus Orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. NASA/JPL-Caltech New details about the crust on Venus include some surprises about the geology of Earth’s hotter twin, according to new NASA-funded research that describes movements of the planet’s crust.
      Scientists expected the outermost layer of Venus’ crust would grow thicker and thicker over time given its apparent lack of forces that would drive the crust back into the planet’s interior. But the paper, published in Nature Communications, proposes a crust metamorphism process based on rock density and melting cycles.
      Earth’s rocky crust is made up of massive plates that slowly move, forming folds and faults in a process known as plate tectonics. For example, when two plates collide, the lighter plate slides on top of the denser one, forcing it downward into the layer beneath it, the mantle. This process, known as subduction, helps control the thickness of Earth’s crust. The rocks making up the bottom plate experience changes caused by increasing temperature and pressure as it sinks deeper into the interior of the planet. Those changes are known as metamorphism, which is one cause of volcanic activity.
      In contrast, Venus has a crust that is all one piece, with no evidence for subduction caused by plate tectonics like on Earth, explained Justin Filiberto, deputy chief of NASA’s Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston and a co-author on the paper. The paper used modeling to determine that its crust is about 25 miles (40 kilometers) thick on average and at most 40 miles (65 kilometers) thick.
      “That is surprisingly thin, given conditions on the planet,” said Filiberto. “It turns out that, according to our models, as the crust grows thicker, the bottom of it becomes so dense that it either breaks off and becomes part of the mantle or gets hot enough to melt.” So, while Venus has no moving plates, its crust does experience metamorphism. This finding is an important step toward understanding geological processes and evolution of the planet.
      “This breaking off or melting can put water and elements back into the planet’s interior and help drive volcanic activity,” added Filiberto. “This gives us a new model for how material returns to the interior of the planet and another way to make lava and spur volcanic eruptions. It resets the playing field for how the geology, crust, and atmosphere on Venus work together.”
      The next step, he added, is to gather direct data about Venus’ crust to test and refine these models. Several upcoming missions, including NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) and VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) and, in partnership with ESA (European Space Agency), Envision, aim to study the planet’s surface and atmosphere in greater detail. These efforts could help confirm whether processes like metamorphism and recycling are actively shaping the Venusian crust today—and reveal how such activity may be tied to volcanic and atmospheric evolution.
      “We don’t actually know how much volcanic activity is on Venus,” Filiberto said. “We assume there is a lot, and research says there should be, but we’d need more data to know for sure.”
      Melissa Gaskill
      NASA Johnson Space Center
      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Victoria Segovia
      NASA’s Johnson Space Center
      281-483-5111
      victoria.segovia@nasa.gov

      Read More About Venus

      Share








      Details
      Last Updated May 09, 2025 Related Terms
      Astromaterials Venus Explore More
      5 min read How NASA is Using Virtual Reality to Prepare for Science on Moon


      Article


      2 months ago
      5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…


      Article


      5 months ago
      5 min read 5 Surprising NASA Heliophysics Discoveries Not Related to the Sun


      Article


      6 months ago
      Keep Exploring Discover Related Topics
      Venus



      Astromaterials



      Planetary Science



      Solar System


      View the full article
    • By USH
      In a groundbreaking development, advances in quantum data analysis have led to a discovery no scientist could have foreseen. NASA’s deep space monitoring system, upgraded with a quantum processor designed to filter cosmic noise and decode interstellar signals, produced something startling: an image.
      A conceptual interpretation of the Voyager 1 image.
      But this wasn’t an input, a simulation, or a product of algorithmic imagination. It wasn’t the result of random noise or a misfired pattern recognition process. The quantum system returned a coherent, structured, and symmetrical image, undeniably artificial. And the data it derived from? None other than Voyager 1. 
      Renowned physicist Michio Kaku addressed the anomaly in a recent interview: “We may be witnessing the first whisper of a new intelligence, something not man-made, not terrestrial, and certainly not random.” 
      The image, reconstructed via entangled qubit networks, depicted a figure: humanoid in silhouette, yet composed of geometric segments that defied any known biological or mechanical blueprint. It seemed deliberately crafted to challenge human comprehension, alien, yet eerily familiar enough to spark recognition.
      Not long ago, NASA pushed the boundaries of computation by launching an experimental quantum computer, capable of processing vast, multidimensional data streams. But after this revelation, NASA abruptly shut down the system following the unexpected and unsettling incident, in 2023, though some believe the research continued in secret. 
      Meanwhile, Voyager 1—the most distant human-made object in space, still traveling beyond our solar system after 45 years—has been transmitting strange, inexplicable data. According to NASA engineers, the spacecraft’s Attitude Articulation and Control System (AACS) began sending signals that “do not reflect what’s actually happening onboard.” 
      Instead of useful telemetry, Voyager 1 has been broadcasting a puzzling sequence: a repeating pattern of ones and zeros. Initially dismissed as a glitch, engineers traced the anomaly to the Flight Data Subsystem (FDS), pinpointing a malfunctioning chip. Yet, despite their efforts, the signal persisted, a digital enigma from 24 billion kilometers away. 
      Is this merely a failing system showing its age? Or is something, or someone, intentionally altering the data? 
      What if this “error” is a message? And if so, who’s sending it?
        View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read New Visualization From NASA’s Webb Telescope Explores Cosmic Cliffs
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex. Credits:
      NASA, ESA, CSA, STScI. In July 2022, NASA’s James Webb Space Telescope made its public debut with a series of breathtaking images. Among them was an ethereal landscape nicknamed the Cosmic Cliffs. This glittering realm of star birth is the subject of a new 3D visualization derived from the Webb data. The visualization, created by NASA’s Universe of Learning and titled “Exploring the Cosmic Cliffs in 3D,” breathes new life into an iconic Webb image.
      It is being presented today at a special event hosted by the International Planetarium Society to commemorate the 100th anniversary of the first public planetarium in Munich, Germany.
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex.
      Ultraviolet light and stellar winds from the stars of NGC 3324 have carved a cavernous area within Gum 31. A portion of this giant bubble is seen above the Cosmic Cliffs. (The star cluster itself is outside this field of view.)
      The Cliffs display a misty appearance, with “steam” that seems to rise from the celestial mountains. In actuality, the wisps are hot, ionized gas and dust streaming away from the nebula under an onslaught of relentless ultraviolet radiation.
      Eagle-eyed viewers may also spot particularly bright, yellow streaks and arcs that represent outflows from young, still-forming stars embedded within the Cosmic Cliffs. The latter part of the visualization sequence swoops past a prominent protostellar jet in the upper right of the image.
      Video: Exploring the Cosmic Cliffs in 3D
      In July 2022, NASA’s James Webb Space Telescope made history, revealing a breathtaking view of a region now nicknamed the Cosmic Cliffs. This glittering landscape, captured in incredible detail, is part of the nebula Gum 31 — a small piece of the vast Carina Nebula Complex — where stars are born amid clouds of gas and dust.
      This visualization brings Webb’s iconic image to life — helping us imagine the true, three-dimensional structure of the universe… and our place within it.
      Produced for NASA by the Space Telescope Science Institute (STScI) with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA’s Universe of Learning, this visualization is part of a longer, narrated video that provides broad audiences, including youth, families, and lifelong learners, with a direct connection to the science and scientists of NASA’s Astrophysics missions. That video enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      “Bringing this amazing Webb image to life helps the public to comprehend the three-dimensional structure inherent in the 2D image, and to develop a better mental model of the universe,” said STScI’s Frank Summers, principal visualization scientist and leader of the AstroViz Project.
      More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA’s Universe of Learning including a Carina Nebula Complex resource page and ViewSpace, a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.
      NASA’s Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA’s Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Explore more: Carina Nebula Complex from NASA’s Universe of Learning
      Read more: Webb’s view of the Cosmic Cliffs
      Listen: Carina Nebula sonification
      Read more: Webb’s star formation discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
    • By NASA
      Dave Gallagher will become the director of NASA’s Jet Propulsion Laboratory in Southern California on Monday, June 2. Credit: NASA/JPL-Caltech The following is a statement from acting NASA Administrator Janet Petro on the appointment of David Gallagher as director of the agency’s Jet Propulsion Laboratory (JPL) in Southern California. NASA JPL announced Wednesday Laurie Leshin would step down effective Sunday, June 1.
      “Laurie Leshin’s leadership at JPL has been nothing short of extraordinary. She brought a sharp scientific mind, a strong sense purpose, and a clear vision that helped propel the lab forward during a pivotal time. From groundbreaking missions to remarkable technological milestones, Laurie advanced JPL’s legacy of exploration and innovation. We are grateful for her service and wish her the very best as she continues to inspire in the next phase of her career.
      “I’m equally confident in Dave Gallagher’s ability to lead JPL’s next chapter. He brings decades of experience, a steady hand, and a deep understanding of what makes JPL unique. With Dave at the helm, JPL remains well-positioned to continue delivering for NASA and the nation – pushing the boundaries of science and discovery for the benefit of all.”
      For more information about NASA, visit:
      https://www.nasa.gov
      -end-
      Bethany Stevens / Amber Jacobson
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / amber.c.jacobson@nasa.gov 
      Share
      Details
      Last Updated May 07, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Jet Propulsion Laboratory View the full article
  • Check out these Videos

×
×
  • Create New...