Jump to content

50 Years Ago: Launch of Skylab 4, The Final Mission to Skylab


Recommended Posts

  • Publishers
Posted

The third and final crewed mission to the Skylab space station, Skylab 4, got underway on Nov. 16, 1973, with a thunderous launch from NASA’s Kennedy Space Center (KSC) in Florida. Docking eight hours later, astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue began a planned 56-day mission that program managers extended to a record-breaking 84 days. During their first month, as they adjusted to weightlessness and their new surroundings, they completed the first of four spacewalks. They began an extensive science program, investigating the effects of long-duration spaceflight on human physiology, examining the Sun, conducting observations of the Earth, as well as technology and student-led experiments. They began their systematic observations of recently discovered Comet Kohoutek as it approached the Sun.

Crew patch of the third and final crewed mission to Skylab Photo of the Skylab 4 crew of Gerald P. Carr, Edward G. Gibson, and William R. Pogue Photo of the Skylab 4 backup crew of Vance D. Brand, left, William B. Lenoir, and Don L. Lind
Left: Crew patch of the third and final crewed mission to Skylab. Middle: Official photo of the Skylab 4 crew of Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue. Right: The Skylab 4 backup crew of Vance D. Brand, left, William B. Lenoir, and Don L. Lind.

In January 1972, NASA announced the astronauts it had selected for the Skylab program. For Skylab 4, the third crewed mission and at the time planned to last 56 days, NASA named Carr as commander, Gibson as science pilot, and Pogue as pilot to serve as the prime crew, the first all-rookie prime crew since Gemini VIII in 1966. For the backup crew, NASA designated Vance D. Brand, William B. Lenoir, and Don L. Lind, who also served as the backup crew for Skylab 3. Brand and Lind would serve as the two-person crew for a possible rescue mission.

The S-IB first stage for the Skylab 4 mission’s SA-208 Saturn IB rocket arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida The two S-IVB second stages for the Skylab 4 SA-208 rocket, right, and the SA-209 Skylab rescue rocket sit side by side in the VAB Image of workers in the VAB stack the second stage onto the first stage for the Skylab 4 Saturn IB
Left: The S-IB first stage for the Skylab 4 mission’s SA-208 Saturn IB rocket arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Middle: The two S-IVB second stages for the Skylab 4 SA-208 rocket, right, and the SA-209 Skylab rescue rocket sit side by side in the VAB. Right: Workers in the VAB stack the second stage onto the first stage for the Skylab 4 Saturn IB.

Preparations at KSC for the Skylab 4 mission began on Nov. 4, 1971, with the arrival of the S-IVB second stage of the SA-208 Saturn IB rocket. Workers placed it in long-term storage in the Vehicle Assembly Building (VAB). The rocket’s S-IB first stage arrived on June 20, 1973. Workers in the VAB mounted it on Mobile Launcher 1 on July 31, adding the second stage later that same day.

Photo of the arrival of the Skylab 4 Command Module (CM), front, and Service Module, partly hidden at left, in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida Photo of Skylab 4 astronauts conduct an altitude test aboard their CM in the MSOB Photo of the rollout of the Skylab 4 vehicle from the Vehicle Assembly Building to Launch Pad 39B Photo of workers at Launch Pad 39B replace the eight stabilization fins on the Saturn IB rocket’s first stage
Left: The arrival of the Skylab 4 Command Module (CM), front, and Service Module, partly hidden at left, in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. Middle left: The Skylab 4 astronauts conduct an altitude test aboard their CM in the MSOB. Middle right: Rollout of the Skylab 4 vehicle from the Vehicle Assembly Building to Launch Pad 39B. Right: Workers at Launch Pad 39B replace the eight stabilization fins on the Saturn IB rocket’s first stage.

Meanwhile, Command and Service Module-118 (CSM-118) for the mission arrived in KSC’s Manned Spacecraft and Operations Building (MSOB) on Feb. 10, 1973, where engineers placed it inside a vacuum chamber. The prime and backup crews conducted altitude tests of the CSM in early August. With the thruster problems aboard the Skylab 3 spacecraft docked to the space station, managers accelerated the processing flow for the Skylab 4 vehicle to enable a launch as early as Sept. 9 in case they had to implement a rescue mission. Workers mated CSM-118 to the Saturn rocket on Aug. 10 and rolled the stack to Launch Pad 39B four days later. By this time, the need for a rescue had diminished and the processing flow readjusted to enable a launch on need within nine days until the Skylab 3 splashdown on Sept. 25. Normal processing then resumed for a planned Nov. 9 launch, later adjusted to Nov. 11. Carr, Gibson, and Pogue entered their preflight health stabilization plan quarantine on Oct. 20. On Nov. 6, workers found hairline cracks in the mounting brackets of the Saturn IB’s stabilizing fins, requiring a slip of the launch date to Nov. 16 to complete their replacement at the pad. The Skylab 4 countdown began on Nov. 14, the day after the astronauts arrived at KSC.

Photo of Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr training in the Skylab training mockup Photo of Gibson, left, Carr, and Pogue display a model of the Skylab space station at the conclusion of their preflight press conference Photo of Gibson, left, Carr, and Pogue pose in front of a T-38 Talon aircraft at Ellington Air Force Base in Houston prior to their departure for NASA’s Kennedy Space Center in Florida for the launch
Left: Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr training in the Skylab training mockup. Middle: Gibson, left, Carr, and Pogue display a model of the Skylab space station at the conclusion of their preflight press conference. Right: Gibson, left, Carr, and Pogue pose in front of a T-38 Talon aircraft at Ellington Air Force Base in Houston prior to their departure for NASA’s Kennedy Space Center in Florida for the launch.

Photo of Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr enjoy the traditional prelaunch breakfast Carr, Gibson, and Pogue test the pressure integrity of their spacesuits before launch Photo of Carr, front, Gibson, and Pogue exit crew quarters to board the transfer van for the ride to Launch Pad 39B
Left: Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr enjoy the traditional prelaunch breakfast. Middle: Carr, front, Gibson, and Pogue test the pressure integrity of their spacesuits before launch. Right: Carr, front, Gibson, and Pogue exit crew quarters to board the transfer van for the ride to Launch Pad 39B.

Liftoff of Skylab 4
Liftoff of Skylab 4!

The third and final mission to the Skylab space station got underway on Nov. 16, 1973, with a thunderous liftoff from KSC’s Launch Pad 39B. Although officially planned as a 56-day mission for several years, mission managers had confidence of an extension to 84 days and planned accordingly, with the astronauts bringing additional food, supplies, and science experiments.

Photo of Skylab during the rendezvous and docking Three astronaut manikins wear the Skylab 4 crew’s flight overalls
Left: Skylab during the rendezvous and docking. Right: Left by the Skylab 3 crew before their departure from the station, three astronaut manikins wear the Skylab 4 crew’s flight overalls.

Eight hours after launch, and following two unsuccessful attempts, Carr hard docked the spacecraft to the space station. Pogue, who on Earth appeared resistant to all forms of motion sickness, developed a case of space motion sickness during the crew’s first evening, requiring several days to fully recover. This incident along with an overly packed timeline caused the astronauts to fall behind in accomplishing their tasks as they adjusted to weightlessness and learned their way around the large space station. The astronauts spent their first night in space aboard the Command Module, opening the hatch the next morning to begin reactivating Skylab. To their surprise, the station appeared to already have three occupants. As a joke, before they left the station in September, the Skylab 3 crew stuffed their successors’ flight suits with used clothing and left them in strategic places throughout the workshop. Carr, Gibson, and Pogue began settling into the routine aboard Skylab, preparing meals, exercising, and starting the large number of experiments. They continued the science program begun by the previous two Skylab crews, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package (EREP), and solar observations with instruments mounted on the Apollo Telescope Mount (ATM). With the prediction earlier in the year that newly discovered Comet Kohoutek would make its closest approach to the Sun in late December, scientists added cometary observations to the crew’s already busy schedule. The astronauts brought a Far Ultraviolet Electronographic Camera, the backup to the instrument deployed on the Moon during Apollo 16, to Skylab especially for observations of the comet, and used it for cometary photography during two spacewalks added to the mission.

Photo of Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr prepare a meal in the Skylab wardroom Photo of Carr using the Thornton treadmill to exercise Carr “weighs” himself in weightlessness using the body mass measurement device
Left: Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr prepare a meal in the Skylab wardroom. Middle: Carr uses the Thornton treadmill to exercise. Right: Carr “weighs” himself in weightlessness using the body mass measurement device.

One of the lessons learned from the first two Skylab missions indicated that the onboard bicycle ergometer alone did not provide enough exercise to maintain leg and back muscle mass and strength. To remedy this problem, physician and Skylab support astronaut Dr. William E. Thornton designed a makeshift treadmill that the third crew brought with them to the station. The treadmill device consisted of a teflon-coated aluminum plate bolted to the floor of the workshop. Bungee cords attached to the floor and to the ergometer harness supplied the downward force for the back and leg muscles with the astronauts sliding over the teflon-coated plate while walking or jogging in stocking feet. Because the exercise provided quite a strenuous workout, the crew dubbed it “Thornton’s revenge.” They also increased the overall amount of time they spent exercising.

Photo of William R. Pogue replaces film in the Apollo Telescope Mount during the mission’s first spacewalk Gerald P. Carr flies the Astronaut Maneuvering Unit Overall view showing the large volume of the Skylab Orbital Workshop
Left: William R. Pogue replaces film in the Apollo Telescope Mount during the mission’s first spacewalk. Middle: Gerald P. Carr flies the Astronaut Maneuvering Unit. Right: Overall view showing the large volume of the Skylab Orbital Workshop.

In addition to the heavy science experiment load, the astronauts spent the first week in orbit preparing for the first spacewalk of the mission. On Nov. 22, their seventh day in space and also Thanksgiving Day, Gibson and Pogue suited up and stepped outside the space station with Gibson exclaiming, “Boy, if this isn’t the great outdoors.” During this six-hour 33-minute spacewalk, they replaced film canisters in the ATM and deployed an experiment package on the ATM truss. They took photographs with a camera that had originally been intended for the airlock now blocked by the sunshade that the first crew deployed in May to help cool the station. Gibson and Pogue accomplished all the tasks planned for this first spacewalk. Back inside the station, the astronauts settled in for the first Thanksgiving meal in space. For their dinner, Carr selected prime rib, Gibson went with traditional turkey, and Pogue chose chicken.

The S-IB first stage for Saturn-IB SA-209, the Skylab 4 rescue mission, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center Photo of the S-IVB second stage for SA-209 inside the VAB Workers stack the Command and Service Module CSM-119, the Skylab 4 rescue spacecraft, atop SA-209 Image of the Skylab 4 rescue vehicle at Launch Pad 39B
Left: The S-IB first stage for Saturn-IB SA-209, the Skylab 4 rescue mission, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Middle left: The S-IVB second stage for SA-209 inside the VAB. Middle right: Workers stack the Command and Service Module CSM-119, the Skylab 4 rescue spacecraft, atop SA-209. Right: The Skylab 4 rescue vehicle at Launch Pad 39B.

The inclusion of two docking ports on the Skylab space station enabled an in-flight rescue capability for the first time in human spaceflight history. In case a failure of the docked CSM stranded the onboard three-person crew, a two-person crew would launch in a second Apollo spacecraft specially configured with two extra couches to return all five astronauts. For the first two Skylab missions, the rocket and spacecraft for the subsequent mission served as the potential rescue vehicle. The failure of two Service Module thruster groups during Skylab 3 nearly required the rescue capability. Since Skylab 4 was the final mission, NASA procured an additional Saturn IB rocket, SA-209, and Apollo spacecraft, CSM-119, for the rescue role. The spacecraft arrived at KSC on May 2, 1973, and workers placed it in storage in the MSOB. In September, the backup crew of Brand, Lenoir, and Lind completed altitude chamber tests with the CSM, although only Brand and Lenoir would fly any the rescue mission. The S-IVB second stage for Saturn IB SA-209 arrived at KSC on Jan. 12, 1972, and workers placed it in storage in the VAB. The S-IB first stage arrived on Aug. 20, 1973. Because only one Mobile Launcher included the milkstool to launch a Saturn IB, assembly of the rescue vehicle had to await its return from the launch pad the day after the Skylab 4 liftoff. Assembly of the rocket in the VAB began on Nov. 26, and workers topped the rocket off with the spacecraft four days later. The stacked vehicle rolled out to Launch Pad 39B on Dec. 3 where engineers prepared the vehicle so that after Dec. 20, it could support a launch within nine days, should the need arise. The vehicle remained at the pad until Feb. 14, 1974, six days after the Skylab 4 splashdown.

Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system Gibson works out on the bicycle ergometer during a test of his cardiopulmonary function Gibson in the rotating chair to test his vestibular system
Left: Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system. Middle: Gibson works out on the bicycle ergometer during a test of his cardiopulmonary function. Right: Gibson in the rotating chair to test his vestibular system.

To add to their packed timeline, one of the station’s three control moment gyros (CMGs) failed the day after the first spacewalk. Skylab used CMGs to control the station’s attitude without expending precious attitude control gas, a non-renewable resource heavily depleted early in the station’s life. Engineers on the ground worked out a plan to control the station’s attitude using only the two working CMGs, thereby enabling completion of the remaining science, especially the Earth resource passes and comet Kohoutek observations. Pogue made the first measurements of Comet Kohoutek on Nov. 23 from inside the station using a photometric camera brought to Skylab especially to observe the comet. The astronauts practiced flying the Astronaut Maneuvering Unit, a precursor of the Manned Maneuvering Unit used during the space shuttle program to retrieve satellites, inside the large dome of the workshop.

Image of Edward G. Gibson at the controls of the Apollo Telescope Mount Image of William R. Pogue, left, and Gerald P. Carr at the control panel for the Earth Resources Experiment package inside the Multiple Docking Adapter
Left: Edward G. Gibson at the controls of the Apollo Telescope Mount. Right: William R. Pogue, left, and Gerald P. Carr at the control panel for the Earth Resources Experiment package inside the Multiple Docking Adapter.

Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments Earth Resources Experiment Package photograph of the San Francisco Bay area Crew handheld photograph of a cyclone in the South Pacific
Left: Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments. Middle: Earth Resources Experiment Package photograph of the San Francisco Bay area. Right: Crew handheld photograph of a cyclone in the South Pacific.

On Dec. 13, the mission’s 28th day, program officials assessed the astronauts’ performance and the status of the station and fully expected that they could complete the nominal 56-day mission and most likely the full 84 days. Despite being overworked and often behind the timeline, Carr, Gibson, and Pogue had already accomplished 84 hours of solar observations, 12 Earth resources passes, 80 photographic and visual Earth observations, all of the scheduled medical experiments, as well as numerous other activities such as student experiments, and science demonstrations. The astronaut’s major concern centered around the timelining process that had not given them time to adjust to their new environment and did not take into account their on-orbit daily routine. Despite the crew sending taped verbal messages to the ground asking for help in fixing these issues, the problem persisted. Skylab 4 Lead Flight Director Neil B. Hutchinson later admitted that the ground team learned many lessons about timelining long duration missions during the first few weeks of Skylab 4.

For more insight into the Skylab 4 mission, read Carr’s, Gibson’s, and Pogue’s oral histories with the JSC History Office.

To be continued …

With special thanks to Ed Hengeveld for his expert contributions on Skylab imagery.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By European Space Agency
      Video: 00:00:00 ESA’s state-of-the-art Biomass satellite launched aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).
      In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.
      Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      JunoCam, the visible light imager aboard NASA’s Juno, captured this enhanced-color view of Ju-piter’s northern high latitudes from an altitude of about 36,000 miles (58,000 kilometers) above the giant planet’s cloud tops during the spacecraft’s 69th flyby on Jan. 28, 2025. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing: Jackie Branc (CC BY) New data from the agency’s Jovian orbiter sheds light on the fierce winds and cyclones of the gas giant’s northern reaches and volcanic action on its fiery moon.
      NASA’s Juno mission has gathered new findings after peering below Jupiter’s cloud-covered atmosphere and the surface of its fiery moon, Io. Not only has the data helped develop a new model to better understand the fast-moving jet stream that encircles Jupiter’s cyclone-festooned north pole, it’s also revealed for the first time the subsurface temperature profile of Io, providing insights into the moon’s inner structure and volcanic activity.
      Team members presented the findings during a news briefing in Vienna on Tuesday, April 29, at the European Geosciences Union General Assembly.
      “Everything about Jupiter is extreme. The planet is home to gigantic polar cyclones bigger than Australia, fierce jet streams, the most volcanic body in our solar system, the most powerful aurora, and the harshest radiation belts,” said Scott Bolton, principal investigator of Juno at the Southwest Research Institute in San Antonio. “As Juno’s orbit takes us to new regions of Jupiter’s complex system, we’re getting a closer look at the immensity of energy this gas giant wields.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Made with data from the JIRAM instrument aboard NASA’s Juno, this animation shows the south polar region of Jupiter’s moon Io during a Dec. 27, 2024, flyby. The bright spots are locations with higher temperatures caused by volcanic activity; the gray areas resulted when Io left the field of view.NASA/JPL/SwRI/ASI – JIRAM Team (A.M.) Lunar Radiator
      While Juno’s microwave radiometer (MWR) was designed to peer beneath Jupiter’s cloud tops, the team has also trained the instrument on Io, combining its data with Jovian Infrared Auroral Mapper (JIRAM) data for deeper insights.
      “The Juno science team loves to combine very different datasets from very different instruments and see what we can learn,” said Shannon Brown, a Juno scientist at NASA’s Jet Propulsion Laboratory in Southern California. “When we incorporated the MWR data with JIRAM’s infrared imagery, we were surprised by what we saw: evidence of still-warm magma that hasn’t yet solidified below Io’s cooled crust. At every latitude and longitude, there were cooling lava flows.”
      The data suggests that about 10% of the moon’s surface has these remnants of slowly cooling lava just below the surface. The result may help provide insight into how the moon renews its surface so quickly as well as how as well as how heat moves from its deep interior to the surface.
      “Io’s volcanos, lava fields, and subterranean lava flows act like a car radiator,” said Brown, “efficiently moving heat from the interior to the surface, cooling itself down in the vacuum of space.”
      Looking at JIRAM data alone, the team also determined that the most energetic eruption in Io’s history (first identified by the infrared imager during Juno’s Dec. 27, 2024, Io flyby) was still spewing lava and ash as recently as March 2. Juno mission scientists believe it remains active today and expect more observations on May 6, when the solar-powered spacecraft flies by the fiery moon at a distance of about 55,300 miles (89,000 kilometers).
      This composite image, derived from data collected in 2017 by the JIRAM instrument aboard NASA’s Juno, shows the central cyclone at Jupiter’s north pole and the eight cy-clones that encircle it. Data from the mission indicates these storms are enduring fea-tures.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM Colder Climes
      On its 53rd orbit (Feb 18, 2023), Juno began radio occultation experiments to explore the gas giant’s atmospheric temperature structure. With this technique, a radio signal is transmitted from Earth to Juno and back, passing through Jupiter’s atmosphere on both legs of the journey. As the planet’s atmospheric layers bend the radio waves, scientists can precisely measure the effects of this refraction to derive detailed information about the temperature and density of the atmosphere.
      So far, Juno has completed 26 radio occultation soundings. Among the most compelling discoveries: the first-ever temperature measurement of Jupiter’s north polar stratospheric cap reveals the region is about 11 degrees Celsius cooler than its surroundings and is encircled by winds exceeding 100 mph (161 kph).
      Polar Cyclones
      The team’s recent findings also focus on the cyclones that haunt Jupiter’s north. Years of data from the JunoCam visible light imager and JIRAM have allowed Juno scientists to observe the long-term movement of Jupiter’s massive northern polar cyclone and the eight cyclones that encircle it. Unlike hurricanes on Earth, which typically occur in isolation and at lower latitudes, Jupiter’s are confined to the polar region.
      By tracking the cyclones’ movements across multiple orbits, the scientists observed that each storm gradually drifts toward the pole due to a process called “beta drift” (the interaction between the Coriolis force and the cyclone’s circular wind pattern). This is similar to how hurricanes on our planet migrate, but Earthly cyclones break up before reaching the pole due to the lack of warm, moist air needed to fuel them, as well as the weakening of the Coriolis force near the poles. What’s more, Jupiter’s cyclones cluster together while approaching the pole, and their motion slows as they begin interacting with neighboring cyclones.
      “These competing forces result in the cyclones ‘bouncing’ off one another in a manner reminiscent of springs in a mechanical system,” said Yohai Kaspi, a Juno co-investigator from the Weizmann Institute of Science in Israel. “This interaction not only stabilizes the entire configuration, but also causes the cyclones to oscillate around their central positions, as they slowly drift westward, clockwise, around the pole.”
      The new atmospheric model helps explain the motion of cyclones not only on Jupiter, but potentially on other planets, including Earth.
      “One of the great things about Juno is its orbit is ever-changing, which means we get a new vantage point each time as we perform a science flyby,” said Bolton. “In the extended mission, that means we’re continuing to go where no spacecraft has gone before, including spending more time in the strongest planetary radiation belts in the solar system. It’s a little scary, but we’ve built Juno like a tank and are learning more about this intense environment each time we go through it.”
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is at: https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-062
      Share
      Details
      Last Updated Apr 29, 2025 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville. 
      Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASA Live streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
      Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
      Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
      Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
      Schedule of Events:
      Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
      A free event for the public to view rockets and meet the student teams.
      Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
      Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
      About the Competition
      Student Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
      Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
      Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
      In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
      For more information about Student Launch, please visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Taylor Goodwin 
      NASA’s Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      taylor.goodwin@nasa.gov
      Facebook logo @NASAStudentLaunch @StudentLaunch Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 29, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center For Colleges & Universities Learning Resources Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...